File: demo_plasticity.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (273 lines) | stat: -rw-r--r-- 10,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
% Copyright (C) 2010-2016 Amandine Cottaz, Yves Renard, Farshid Dabaghi.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

clear all;
gf_workspace('clear all');
clc;



% Plasticity problem with a Von Mises criterion with or without kinematic hardening
% For convenience we consider an homogenous Dirichlet condition on the left
% of the domain and an easy computed Neumann Condition on the right


with_hardening = 1;
bi_material = false;
test_tangent_matrix = false;
do_plot = true;



% Initialize used data
LX = 100;
LY = 20;
NX = 50;
NY = 20;

% alpha is parameter of the generalized integration algorithms.
% The choice alpha = 1/2 yields the mid point method and alpha = 1 leads to
% backward Euler integration
alpha = 1.0;





f = [0 -600]';
t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0];
if (with_hardening == 1)
  f = [15000 0]';
  t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0];
end

% Create the mesh
% m = gfMesh('triangles grid', [0:(LX/NX):LX], [0:(LY/NY):LY]);
m = gfMesh('import','structured',sprintf('GT="GT_PK(2,1)";SIZES=[%d,%d];NOISED=0;NSUBDIV=[%d,%d];', LX, LY, NX, NY));
N = gf_mesh_get(m, 'dim');
  
% Plotting
% gf_plot_mesh(m, 'vertices', 'on', 'convexes', 'on');

% Define used MeshIm
mim=gfMeshIm(m);  set(mim, 'integ', gfInteg('IM_TRIANGLE(6)')); % Gauss methods on triangles

% Define used MeshFem
if (with_hardening == 1)
  mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,2)'));
else
  mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,1)'));
end
mf_data=gfMeshFem(m); set(mf_data, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
% mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
mf_vm = gfMeshFem(m); set(mf_vm, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,1)'));

% Find the border of the domain
P=get(m, 'pts');
pidleft=find(abs(P(1,:))<1e-6); % Retrieve index of points which x near to 0
pidright=find(abs(P(1,:) - LX)<1e-6); % Retrieve index of points which x near to L
fleft =get(m,'faces from pid',pidleft); 
fright=get(m,'faces from pid',pidright);
set(m,'boundary',1,fleft); % for Dirichlet condition
set(m,'boundary',2,fright); % for Neumann condition

% Decomposed the mesh into 2 regions with different values of Lamé coeff
if (bi_material) separation = LY/2; else separation = 0; end
pidtop    = find(P(2,:)>=separation-1E-6); % Retrieve index of points of the top part
pidbottom = find(P(2,:)<=separation+1E-6); % Retrieve index of points of the bottom part
cvidtop   = get(m, 'cvid from pid', pidtop);
cvidbottom= get(m, 'cvid from pid', pidbottom);
CVtop     = sort(get(mf_data, 'basic dof from cvid', cvidtop));
CVbottom  = sort(get(mf_data, 'basic dof from cvid', cvidbottom));

% Definition of Lame coeff
lambda(CVbottom,1) = 121150; % Steel
lambda(CVtop,1) = 84605; % Iron
mu(CVbottom,1) = 80769; %Steel
mu(CVtop,1) = 77839; % Iron
% Definition of plastic threshold
von_mises_threshold(CVbottom) = 7000;
von_mises_threshold(CVtop) = 8000;
% Definition of hardening parameter
if (with_hardening)
  H = mu(1)/5;
else
  H = 0;
end

% Create the model
md = gfModel('real');

% Declare that u is the unknown of the system on mf_u
set(md, 'add fem variable', 'u', mf_u);

% Declare that lambda is a data of the system on mf_data
set(md, 'add initialized fem data', 'lambda', mf_data, lambda);

% Declare that mu is a data of the system on mf_data
set(md, 'add initialized fem data', 'mu', mf_data, mu);

% Declare that von_mises_threshold is a data of the system on mf_data
set(md, 'add initialized fem data', 'von_mises_threshold', mf_data, von_mises_threshold);


  
  
if (with_hardening)
  N = gf_mesh_get(m, 'dim');
  gf_model_set(md, 'add fem data', 'Previous_u', mf_u);
  mim_data = gf_mesh_im_data(mim, -1, [N, N]);
  gf_model_set(md, 'add im data', 'sigma', mim_data);
  
 
  
  % Declare that alpha is a data of the system 
 
  set(md, 'add initialized data', 'alpha', [alpha]);
  set(md, 'add initialized data', 'H', [H]);

  Is = 'Reshape(Id(meshdim*meshdim),meshdim,meshdim,meshdim,meshdim)';
  IxI = 'Id(meshdim)@Id(meshdim)';
  coeff_long = '((lambda)*(H))/((2*(mu)+(H))*(meshdim*(lambda)+2*(mu)+(H)))';
  B_inv = sprintf('((2*(mu)/(2*(mu)+(H)))*(%s) + (%s)*(%s))', Is, coeff_long, IxI);
  B = sprintf('((1+(H)/(2*(mu)))*(%s) - (((lambda)*(H))/(2*(mu)*(meshdim*(lambda)+2*(mu))))*(%s))', Is, IxI);
  ApH = sprintf('((2*(mu)+(H))*(%s) + (lambda)*(%s))', Is, IxI);
  Enp1 = '((Grad_u+Grad_u'')/2)';
  En = '((Grad_Previous_u+Grad_Previous_u'')/2)';
  
  %expression de sigma for Implicit Euler method
  %expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((-(H)*', Enp1, ')+(', ApH, '*(',Enp1,'-',En,')) + (', B, '*sigma), von_mises_threshold) + H*', Enp1, '))');
  
  %expression de sigma for generalized alpha algorithms
  expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((',B,'*((1-alpha)*sigma))+(-(H)*(((1-alpha)*',En,')+(alpha*', Enp1, ')))+(alpha*', ApH, '*(',Enp1,'-',En,')) + (alpha*', ...
    B, '*sigma), von_mises_threshold) + (H)*(((1-alpha)*',En,')+(alpha*', Enp1, '))))');
  
  gf_model_set(md, 'add nonlinear generic assembly brick', mim, strcat(expr_sigma, ':Grad_Test_u'));
  % gf_model_set(md, 'add finite strain elasticity brick', mim, 'SaintVenant Kirchhoff', 'u', '[lambda; mu]');
else
  gf_model_set(md, 'add fem data', 'previous_u', mf_u);
  % Declare that sigma is a data of the system on mf_sigma
  set(md, 'add fem data', 'sigma', mf_sigma);
  % Add plasticity brick on u
  set(md, 'add elastoplasticity brick', mim, 'VM', 'u', 'previous_u', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
end

% Add homogeneous Dirichlet condition to u on the left hand side of the domain
set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf_u, 1);

% Add a source term to the system
set(md,'add initialized fem data', 'VolumicData', mf_data, get(mf_data, 'eval',{f(1,1)*t(1);f(2,1)*t(1)}));
set(md, 'add source term brick', mim, 'u', 'VolumicData', 2);

VM=zeros(1,get(mf_vm, 'nbdof'));



for step=1:size(t,2),
    disp(sprintf('step %d / %d, coeff = %g', step, size(t,2), t(step)));
    set(md, 'variable', 'VolumicData', get(mf_data, 'eval',{f(1,1)*t(step);f(2,1)*t(step)}));

    if (test_tangent_matrix)
      gf_model_get(md, 'test tangent matrix', 1E-8, 10, 0.000001);
    end;
   
    % Solve the system
    get(md, 'solve', 'noisy', 'lsearch', 'simplest',  'alpha min', 0.8, 'max_iter', 100, 'max_res', 1e-6);
    % get(md, 'solve', 'noisy', 'max_iter', 80);

    % Retrieve the solution U
    U = get(md, 'variable', 'u');
    
    % Compute new plasticity constraints used to compute 
    % the Von Mises or Tresca stress
    if (with_hardening)
      sigma_0 = gf_model_get(md, 'variable', 'sigma');
      sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
      U_0 = gf_model_get(md, 'variable', 'Previous_u');
      U_nalpha = alpha*U + (1-alpha)*U_0;
      
      M = gf_asm('mass matrix', mim, mf_vm);
      L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', -1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1));
      VM = (M \ L)';
      coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
      coeff2='1/(2*mu)';
      Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
      Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
      L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, mf_data, lambda);
      plast = (M \ L)';
      
      gf_model_set(md, 'variable', 'u', U_nalpha);
      Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', mim_data);
      gf_model_set(md, 'variable', 'u', U);
      ind_gauss_pt = 22500;
      if (size(sigma, 2) <= N*N*(ind_gauss_pt + 1))
        ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
      end
      sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
      Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
      
      sigma = (sigma - (1-alpha)*sigma_0)/alpha;
      gf_model_set(md, 'variable', 'sigma', sigma);
      gf_model_set(md, 'variable', 'Previous_u', U);
    else
      get(md, 'elastoplasticity next iter', mim, 'u', 'previous_u', 'VM', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
      plast = get(md, 'compute plastic part', mim, mf_vm, 'u', 'previous_u', 'VM', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
      % Compute Von Mises or Tresca stress
      VM = get(md, 'compute elastoplasticity Von Mises or Tresca', 'sigma', mf_vm, 'Von Mises');
    end
       
       
    if (do_plot)
      figure(2)
      subplot(3,1,1);
      gf_plot(mf_vm,VM, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0); % 'deformed_mesh', 'on')
      colorbar;
      axis([-20 120 -20 40]);
      % caxis([0 10000]);
      n = t(step);
      title(['Von Mises criterion for t = ', num2str(step)]);

      subplot(3,1,2);
      gf_plot(mf_vm,plast, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0);  % 'deformed_mesh', 'on')
      colorbar;
      axis([-20 120 -20 40]);
      % caxis([0 10000]);
      n = t(step);
      title(['Plastification for t = ', num2str(step)]);
    
      if (with_hardening)
        subplot(3,1,3);
        plot(Epsilon_u_fig, sigma_fig,'r','LineWidth',2)
        xlabel('Strain');
        ylabel('Stress')
        axis([-0.1 0.35 -16000 16000 ]);
        % hold on;
      end;
      
      pause(0.1);
    end
 
end;