1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
% Copyright (C) 2010-2016 Amandine Cottaz, Yves Renard, Farshid Dabaghi.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
clear all;
gf_workspace('clear all');
clc;
% Plasticity problem with a Von Mises criterion with or without kinematic hardening
% For convenience we consider an homogenous Dirichlet condition on the left
% of the domain and an easy computed Neumann Condition on the right
with_hardening = 1;
bi_material = false;
test_tangent_matrix = false;
do_plot = true;
% Initialize used data
LX = 100;
LY = 20;
NX = 50;
NY = 20;
% alpha is parameter of the generalized integration algorithms.
% The choice alpha = 1/2 yields the mid point method and alpha = 1 leads to
% backward Euler integration
alpha = 1.0;
f = [0 -600]';
t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0];
if (with_hardening == 1)
f = [15000 0]';
t = [0 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0];
end
% Create the mesh
% m = gfMesh('triangles grid', [0:(LX/NX):LX], [0:(LY/NY):LY]);
m = gfMesh('import','structured',sprintf('GT="GT_PK(2,1)";SIZES=[%d,%d];NOISED=0;NSUBDIV=[%d,%d];', LX, LY, NX, NY));
N = gf_mesh_get(m, 'dim');
% Plotting
% gf_plot_mesh(m, 'vertices', 'on', 'convexes', 'on');
% Define used MeshIm
mim=gfMeshIm(m); set(mim, 'integ', gfInteg('IM_TRIANGLE(6)')); % Gauss methods on triangles
% Define used MeshFem
if (with_hardening == 1)
mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,2)'));
else
mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,1)'));
end
mf_data=gfMeshFem(m); set(mf_data, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
% mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
mf_vm = gfMeshFem(m); set(mf_vm, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
% Find the border of the domain
P=get(m, 'pts');
pidleft=find(abs(P(1,:))<1e-6); % Retrieve index of points which x near to 0
pidright=find(abs(P(1,:) - LX)<1e-6); % Retrieve index of points which x near to L
fleft =get(m,'faces from pid',pidleft);
fright=get(m,'faces from pid',pidright);
set(m,'boundary',1,fleft); % for Dirichlet condition
set(m,'boundary',2,fright); % for Neumann condition
% Decomposed the mesh into 2 regions with different values of Lamé coeff
if (bi_material) separation = LY/2; else separation = 0; end
pidtop = find(P(2,:)>=separation-1E-6); % Retrieve index of points of the top part
pidbottom = find(P(2,:)<=separation+1E-6); % Retrieve index of points of the bottom part
cvidtop = get(m, 'cvid from pid', pidtop);
cvidbottom= get(m, 'cvid from pid', pidbottom);
CVtop = sort(get(mf_data, 'basic dof from cvid', cvidtop));
CVbottom = sort(get(mf_data, 'basic dof from cvid', cvidbottom));
% Definition of Lame coeff
lambda(CVbottom,1) = 121150; % Steel
lambda(CVtop,1) = 84605; % Iron
mu(CVbottom,1) = 80769; %Steel
mu(CVtop,1) = 77839; % Iron
% Definition of plastic threshold
von_mises_threshold(CVbottom) = 7000;
von_mises_threshold(CVtop) = 8000;
% Definition of hardening parameter
if (with_hardening)
H = mu(1)/5;
else
H = 0;
end
% Create the model
md = gfModel('real');
% Declare that u is the unknown of the system on mf_u
set(md, 'add fem variable', 'u', mf_u);
% Declare that lambda is a data of the system on mf_data
set(md, 'add initialized fem data', 'lambda', mf_data, lambda);
% Declare that mu is a data of the system on mf_data
set(md, 'add initialized fem data', 'mu', mf_data, mu);
% Declare that von_mises_threshold is a data of the system on mf_data
set(md, 'add initialized fem data', 'von_mises_threshold', mf_data, von_mises_threshold);
if (with_hardening)
N = gf_mesh_get(m, 'dim');
gf_model_set(md, 'add fem data', 'Previous_u', mf_u);
mim_data = gf_mesh_im_data(mim, -1, [N, N]);
gf_model_set(md, 'add im data', 'sigma', mim_data);
% Declare that alpha is a data of the system
set(md, 'add initialized data', 'alpha', [alpha]);
set(md, 'add initialized data', 'H', [H]);
Is = 'Reshape(Id(meshdim*meshdim),meshdim,meshdim,meshdim,meshdim)';
IxI = 'Id(meshdim)@Id(meshdim)';
coeff_long = '((lambda)*(H))/((2*(mu)+(H))*(meshdim*(lambda)+2*(mu)+(H)))';
B_inv = sprintf('((2*(mu)/(2*(mu)+(H)))*(%s) + (%s)*(%s))', Is, coeff_long, IxI);
B = sprintf('((1+(H)/(2*(mu)))*(%s) - (((lambda)*(H))/(2*(mu)*(meshdim*(lambda)+2*(mu))))*(%s))', Is, IxI);
ApH = sprintf('((2*(mu)+(H))*(%s) + (lambda)*(%s))', Is, IxI);
Enp1 = '((Grad_u+Grad_u'')/2)';
En = '((Grad_Previous_u+Grad_Previous_u'')/2)';
%expression de sigma for Implicit Euler method
%expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((-(H)*', Enp1, ')+(', ApH, '*(',Enp1,'-',En,')) + (', B, '*sigma), von_mises_threshold) + H*', Enp1, '))');
%expression de sigma for generalized alpha algorithms
expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((',B,'*((1-alpha)*sigma))+(-(H)*(((1-alpha)*',En,')+(alpha*', Enp1, ')))+(alpha*', ApH, '*(',Enp1,'-',En,')) + (alpha*', ...
B, '*sigma), von_mises_threshold) + (H)*(((1-alpha)*',En,')+(alpha*', Enp1, '))))');
gf_model_set(md, 'add nonlinear generic assembly brick', mim, strcat(expr_sigma, ':Grad_Test_u'));
% gf_model_set(md, 'add finite strain elasticity brick', mim, 'SaintVenant Kirchhoff', 'u', '[lambda; mu]');
else
gf_model_set(md, 'add fem data', 'previous_u', mf_u);
% Declare that sigma is a data of the system on mf_sigma
set(md, 'add fem data', 'sigma', mf_sigma);
% Add plasticity brick on u
set(md, 'add elastoplasticity brick', mim, 'VM', 'u', 'previous_u', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
end
% Add homogeneous Dirichlet condition to u on the left hand side of the domain
set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf_u, 1);
% Add a source term to the system
set(md,'add initialized fem data', 'VolumicData', mf_data, get(mf_data, 'eval',{f(1,1)*t(1);f(2,1)*t(1)}));
set(md, 'add source term brick', mim, 'u', 'VolumicData', 2);
VM=zeros(1,get(mf_vm, 'nbdof'));
for step=1:size(t,2),
disp(sprintf('step %d / %d, coeff = %g', step, size(t,2), t(step)));
set(md, 'variable', 'VolumicData', get(mf_data, 'eval',{f(1,1)*t(step);f(2,1)*t(step)}));
if (test_tangent_matrix)
gf_model_get(md, 'test tangent matrix', 1E-8, 10, 0.000001);
end;
% Solve the system
get(md, 'solve', 'noisy', 'lsearch', 'simplest', 'alpha min', 0.8, 'max_iter', 100, 'max_res', 1e-6);
% get(md, 'solve', 'noisy', 'max_iter', 80);
% Retrieve the solution U
U = get(md, 'variable', 'u');
% Compute new plasticity constraints used to compute
% the Von Mises or Tresca stress
if (with_hardening)
sigma_0 = gf_model_get(md, 'variable', 'sigma');
sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
U_0 = gf_model_get(md, 'variable', 'Previous_u');
U_nalpha = alpha*U + (1-alpha)*U_0;
M = gf_asm('mass matrix', mim, mf_vm);
L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', -1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1));
VM = (M \ L)';
coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
coeff2='1/(2*mu)';
Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, mf_data, lambda);
plast = (M \ L)';
gf_model_set(md, 'variable', 'u', U_nalpha);
Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', mim_data);
gf_model_set(md, 'variable', 'u', U);
ind_gauss_pt = 22500;
if (size(sigma, 2) <= N*N*(ind_gauss_pt + 1))
ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
end
sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
sigma = (sigma - (1-alpha)*sigma_0)/alpha;
gf_model_set(md, 'variable', 'sigma', sigma);
gf_model_set(md, 'variable', 'Previous_u', U);
else
get(md, 'elastoplasticity next iter', mim, 'u', 'previous_u', 'VM', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
plast = get(md, 'compute plastic part', mim, mf_vm, 'u', 'previous_u', 'VM', 'lambda', 'mu', 'von_mises_threshold', 'sigma');
% Compute Von Mises or Tresca stress
VM = get(md, 'compute elastoplasticity Von Mises or Tresca', 'sigma', mf_vm, 'Von Mises');
end
if (do_plot)
figure(2)
subplot(3,1,1);
gf_plot(mf_vm,VM, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0); % 'deformed_mesh', 'on')
colorbar;
axis([-20 120 -20 40]);
% caxis([0 10000]);
n = t(step);
title(['Von Mises criterion for t = ', num2str(step)]);
subplot(3,1,2);
gf_plot(mf_vm,plast, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0); % 'deformed_mesh', 'on')
colorbar;
axis([-20 120 -20 40]);
% caxis([0 10000]);
n = t(step);
title(['Plastification for t = ', num2str(step)]);
if (with_hardening)
subplot(3,1,3);
plot(Epsilon_u_fig, sigma_fig,'r','LineWidth',2)
xlabel('Strain');
ylabel('Stress')
axis([-0.1 0.35 -16000 16000 ]);
% hold on;
end;
pause(0.1);
end
end;
|