1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
% Copyright (C) 2009-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% Static equilibrium of an elastic solid in contact with a rigid foundation.
% Tests the different contact/friction formulations of Getfem.
%
% This program is used to check that matlab-getfem is working. This is also
% a good example of use of GetFEM++.
%
gf_workspace('clear all');
clear all;
% Import the mesh : disc
% m=gf_mesh('load', '../../../tests/meshes/disc_P2_h4.mesh');
m=gf_mesh('load', '../../../tests/meshes/disc_P2_h2.mesh');
% m=gf_mesh('load', '../../../tests/meshes/disc_P2_h1.mesh');
% m=gf_mesh('load', '../../../tests/meshes/disc_P2_h0_5.mesh');
% m=gf_mesh('load', '../../../tests/meshes/disc_P2_h0_3.mesh');
% Import the mesh : sphere
% m=gf_mesh('load', '../../../tests/meshes/sphere_with_quadratic_tetra_8_elts.mesh');
% m=gf_mesh('load', '../../../tests/meshes/sphere_with_quadratic_tetra_80_elts.mesh');
% m=gf_mesh('load', '../../../tests/meshes/sphere_with_quadratic_tetra_400_elts.mesh');
% m=gf_mesh('load', '../../../tests/meshes/sphere_with_quadratic_tetra_2000_elts.mesh');
% m=gf_mesh('load', '../../../tests/meshes/sphere_with_quadratic_tetra_16000_elts.mesh');
d = gf_mesh_get(m, 'dim'); % Mesh dimension
% Parameters of the model
clambda = 1; % Lame coefficient
cmu = 1; % Lame coefficient
friction_coeff = 0.4; % coefficient of friction
vertical_force = 0.015; % Volumic load in the vertical direction
u_degree = 2;
lambda_degree = 2;
incompressibility = 0;
p_degree = 1;
r = 40; % Augmentation parameter
gamma0 = 0.001; % Nitsche's method gamma0 parameter
theta = 1; % Nitsche's method theta parameter
condition_type = 1; % 0 = Explicitely kill horizontal rigid displacements
% 1 = Kill rigid displacements using a global penalization
% 2 = Add a Dirichlet condition on the top of the structure
penalty_parameter = 1E-6; % Penalization coefficient for the global penalization
if (d == 2)
cpoints = [0, 0]; % constrained points for 2d
cunitv = [1, 0]; % corresponding constrained directions for 2d
else
cpoints = [0, 0, 0, 0, 0, 0, 5, 0, 5]; % constrained points for 3d
cunitv = [1, 0, 0, 0, 1, 0, 0, 1, 0]; % corresponding constrained directions for 3d
end;
niter = 100; % Maximum number of iterations for Newton's algorithm.
plot_mesh = true;
version = 1; % 1 : frictionless contact and the basic contact brick
% 2 : contact with 'static' Coulomb friction and basic contact brick
% 3 : frictionless contact and the contact with a
% rigid obstacle brick
% 4 : contact with 'static' Coulomb friction and the contact
% with a rigid obstacle brick
% 5 : frictionless contact and the integral brick
% Newton and Alart-Curnier augmented lagrangian,
% unsymmetric version
% 6 : frictionless contact and the integral brick
% Newton and Alart-Curnier augmented lagrangian, symmetric
% version.
% 7 : frictionless contact and the integral brick
% New unsymmetric method.
% 9 : frictionless contact and the integral brick : Uzawa
% on the Lagrangian augmented by the penalization term.
% 10 : contact with 'static' Coulomb friction and the integral brick
% Newton and Alart-Curnier augmented lagrangian,
% unsymmetric version.
% 11 : contact with 'static' Coulomb friction and the integral brick
% Newton and Alart-Curnier augmented lagrangian,
% nearly symmetric version.
% 12 : contact with 'static' Coulomb friction and the integral brick
% New unsymmetric method.
% 13 : contact with 'static' Coulomb friction and the integral brick
% New unsymmetric method with De Saxce projection.
% 14 : contact with 'static' Coulomb friction and the integral brick : Uzawa
% on the Lagrangian augmented by the penalization term.
% 15 : penalized contact with 'static' Coulomb friction (r is the penalization
% coefficient).
% 16 : contact without friction and integral Nitsche approach
% 17 : contact with friction and integral Nitsche approach
% Signed distance representing the obstacle
if (d == 2) obstacle = 'y'; else obstacle = 'z'; end;
% Selection of the contact and Dirichlet boundaries
GAMMAC = 1; GAMMAD = 2;
border = gf_mesh_get(m,'outer faces');
normals = gf_mesh_get(m, 'normal of faces', border);
contact_boundary=border(:, find(normals(d, :) < -0.01));
gf_mesh_set(m, 'region', GAMMAC, contact_boundary);
dirichlet_boundary=border(:, find(normals(d, :) > 0.01));
gf_mesh_set(m, 'region', GAMMAD, dirichlet_boundary);
% Finite element methods
mfu=gf_mesh_fem(m, d);
gf_mesh_fem_set(mfu, 'classical fem', u_degree);
if (incompressibility)
mfp=gf_mesh_fem(m, 1);
gf_mesh_fem_set(mfp, 'classical fem', p_degree);
end
mfd=gf_mesh_fem(m, 1);
gf_mesh_fem_set(mfd, 'classical fem', u_degree);
mflambda=gf_mesh_fem(m, 1); % used only by versions 5 to 13
gf_mesh_fem_set(mflambda, 'classical fem', lambda_degree);
mfvm=gf_mesh_fem(m, 1);
gf_mesh_fem_set(mfvm, 'classical discontinuous fem', u_degree-1);
% Integration method
mim=gf_mesh_im(m, 4);
if (d == 2)
mim_friction=gf_mesh_im(m, ...
gf_integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(4),4)'));
else
mim_friction=gf_mesh_im(m, ...
gf_integ('IM_STRUCTURED_COMPOSITE(IM_TETRAHEDRON(5),4)'));
end;
% Plot the mesh
if (plot_mesh)
figure(1);
gf_plot_mesh(m, 'regions', [GAMMAC]);
title('Mesh and contact boundary (in red)');
pause(0.1);
end;
% Volumic density of force
nbdofd = gf_mesh_fem_get(mfd, 'nbdof');
nbdofu = gf_mesh_fem_get(mfu, 'nbdof');
F = zeros(nbdofd*d, 1);
F(d:d:nbdofd*d) = -vertical_force;
% Elasticity model
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', ...
'clambda', 'cmu');
if (incompressibility)
gf_model_set(md, 'add fem variable', 'p', mfp);
gf_model_set(md, 'add linear incompressibility brick', mim, 'u', 'p');
end
gf_model_set(md, 'add initialized fem data', 'volumicload', mfd, F);
gf_model_set(md, 'add source term brick', mim, 'u', 'volumicload');
if (condition_type == 2)
Ddata = zeros(1, d); Ddata(d) = -5;
gf_model_set(md, 'add initialized data', 'Ddata', Ddata);
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', u_degree, GAMMAD, 'Ddata');
elseif (condition_type == 0)
gf_model_set(md, 'add initialized data', 'cpoints', cpoints);
gf_model_set(md, 'add initialized data', 'cunitv', cunitv);
gf_model_set(md, 'add pointwise constraints with multipliers', 'u', 'cpoints', 'cunitv');
elseif (condition_type == 1)
% Small penalty term to avoid rigid motion (should be replaced by an
% explicit treatment of the rigid motion with a constraint matrix)
gf_model_set(md, 'add initialized data', 'penalty_param', ...
[penalty_parameter]);
gf_model_set(md, 'add mass brick', mim, 'u', 'penalty_param');
end;
% The contact condition
cdof = gf_mesh_fem_get(mfu, 'dof on region', GAMMAC);
nbc = size(cdof, 2) / d;
if (nbc <= 0)
disp('No contact zone');
return;
end;
solved = false;
if (version == 1 || version == 2) % defining the matrices BN and BT by hand
contact_dof = cdof(d:d:nbc*d);
contact_nodes = gf_mesh_fem_get(mfu, 'basic dof nodes', contact_dof);
BN = sparse(nbc, nbdofu);
ngap = zeros(nbc, 1);
for i = 1:nbc
BN(i, contact_dof(i)) = -1.0;
ngap(i) = contact_nodes(d, i);
end;
if (version == 2)
BT = sparse(nbc*(d-1), nbdofu);
for i = 1:nbc
for j = 1:d-1
BT(j+(i-1)*(d-1), contact_dof(i)-d+j) = 1.0;
end;
end;
end;
gf_model_set(md, 'add variable', 'lambda_n', nbc);
gf_model_set(md, 'add initialized data', 'r', [r]);
if (version == 2)
gf_model_set(md, 'add variable', 'lambda_t', nbc * (d-1));
gf_model_set(md, 'add initialized data', 'friction_coeff', ...
[friction_coeff]);
end;
gf_model_set(md, 'add initialized data', 'ngap', ngap);
gf_model_set(md, 'add initialized data', 'alpha', 2*ones(nbc, 1));
if (version == 1)
gf_model_set(md, 'add basic contact brick', 'u', 'lambda_n', 'r', ...
BN, 'ngap', 'alpha', 1);
else
gf_model_set(md, 'add basic contact brick', 'u', 'lambda_n', ...
'lambda_t', 'r', BN, BT, 'friction_coeff', 'ngap', 'alpha', 1);
end;
elseif (version == 3 || version == 4) % BN and BT defined by contact brick
gf_model_set(md, 'add variable', 'lambda_n', nbc);
gf_model_set(md, 'add initialized data', 'r', [r]);
if (version == 3)
gf_model_set(md, 'add nodal contact with rigid obstacle brick', mim, 'u', ...
'lambda_n', 'r', GAMMAC, obstacle, 1);
else
gf_model_set(md, 'add variable', 'lambda_t', nbc * (d-1));
gf_model_set(md, 'add initialized data', 'friction_coeff', ...
[friction_coeff]);
gf_model_set(md, 'add nodal contact with rigid obstacle brick', mim, 'u', ...
'lambda_n', 'lambda_t', 'r', 'friction_coeff', GAMMAC, ...
obstacle, 1);
end;
elseif (version >= 5 && version <= 8) % The integral version, Newton
gf_model_set(md, 'add multiplier', 'lambda_n', mflambda, 'u', mim, GAMMAC);
gf_model_set(md, 'add initialized data', 'r', [r]);
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
gf_model_set(md, 'add integral contact with rigid obstacle brick', ...
mim_friction, 'u', 'lambda_n', 'obstacle', 'r', GAMMAC, version-4);
elseif (version == 9) % The integral version, Uzawa on the augmented Lagrangian
ldof = gf_mesh_fem_get(mflambda, 'dof on region', GAMMAC);
mflambda_partial = gf_mesh_fem('partial', mflambda, ldof);
nbc = gf_mesh_fem_get(mflambda_partial, 'nbdof');
M = gf_asm('mass matrix', mim, mflambda_partial, mflambda_partial, GAMMAC);
lambda_n = zeros(1, nbc);
gf_model_set(md, 'add initialized fem data', 'lambda_n', mflambda_partial, lambda_n);
gf_model_set(md, 'add initialized data', 'r', [r]);
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
gf_model_set(md, 'add penalized contact with rigid obstacle brick', mim_friction, 'u', ...
'obstacle', 'r', GAMMAC, 2, 'lambda_n');
for ii=1:100
disp(sprintf('iteration %d', ii));
gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter); % , 'very noisy');
U = gf_model_get(md, 'variable', 'u');
lambda_n_old = lambda_n;
lambda_n = (M\ gf_asm('integral contact Uzawa projection', GAMMAC, mim_friction, mfu, U, mflambda_partial, lambda_n, mfd, OBS, r))';
gf_model_set(md, 'variable', 'lambda_n', lambda_n);
difff = max(abs(lambda_n-lambda_n_old));
disp(sprintf('diff : %g', difff/max(abs(lambda_n))));
% pause;
if (difff/max(abs(lambda_n)) < penalty_parameter) break; end;
end;
solved = true;
elseif (version >= 10 && version <= 13) % The integral version with friction, Newton
gf_mesh_fem_set(mflambda, 'qdim', d);
gf_model_set(md, 'add multiplier', 'lambda', mflambda, 'u', mim, GAMMAC);
gf_model_set(md, 'add initialized data', 'r', [r]);
gf_model_set(md, 'add initialized data', 'friction_coeff', [friction_coeff]);
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
gf_model_set(md, 'add integral contact with rigid obstacle brick', mim_friction, 'u', ...
'lambda', 'obstacle', 'r', 'friction_coeff', GAMMAC, version-9);
elseif (version == 14) % The integral version, Uzawa on the augmented Lagrangian with friction
gf_mesh_fem_set(mflambda, 'qdim', d);
ldof = gf_mesh_fem_get(mflambda, 'dof on region', GAMMAC);
mflambda_partial = gf_mesh_fem('partial', mflambda, ldof);
nbc = gf_mesh_fem_get(mflambda_partial, 'nbdof');
gf_model_set(md, 'add initialized data', 'friction_coeff', [friction_coeff]);
M = gf_asm('mass matrix', mim, mflambda_partial, mflambda_partial, GAMMAC);
lambda = zeros(1, nbc);
gf_model_set(md, 'add initialized fem data', 'lambda', mflambda_partial, lambda);
gf_model_set(md, 'add initialized data', 'r', [r]);
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
gf_model_set(md, 'add penalized contact with rigid obstacle brick', mim_friction, 'u', ...
'obstacle', 'r', 'friction_coeff', GAMMAC, 2, 'lambda');
for ii=1:100
disp(sprintf('iteration %d', ii));
gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter); % , 'very noisy');
U = gf_model_get(md, 'variable', 'u');
lambda_old = lambda;
lambda = (M\ gf_asm('integral contact Uzawa projection', GAMMAC, mim_friction, mfu, U, mflambda_partial, lambda, mfd, OBS, r, friction_coeff))';
gf_model_set(md, 'variable', 'lambda', lambda);
difff = max(abs(lambda-lambda_old));
disp(sprintf('diff : %g', difff/max(abs(lambda))));
% pause;
if (difff/max(abs(lambda)) < penalty_parameter) break; end;
end;
solved = true;
elseif (version == 15)
gf_model_set(md, 'add initialized data', 'r', [r]);
gf_model_set(md, 'add initialized data', 'friction_coeff', [friction_coeff]);
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
gf_model_set(md, 'add penalized contact with rigid obstacle brick', mim_friction, 'u', ...
'obstacle', 'r', 'friction_coeff', GAMMAC);
elseif (version == 16 || version == 17)
gf_model_set(md, 'add initialized data', 'gamma0', [gamma0]);
gf_model_set(md, 'add initialized data', 'theta', [theta]);
if (version == 16)
gf_model_set(md, 'add initialized data', 'friction_coeff', [0]);
else
gf_model_set(md, 'add initialized data', 'friction_coeff', [friction_coeff]);
end
OBS = gf_mesh_fem_get(mfd, 'eval', { obstacle });
gf_model_set(md, 'add initialized fem data', 'obstacle', mfd, OBS);
% gf_model_set(md, 'add Nitsche contact with rigid obstacle brick old', mim_friction, 'u', 'obstacle', 'gamma0', 'theta', 'friction_coeff', 'clambda', 'cmu', GAMMAC);
if (version == 16)
gf_model_set(md, 'add Nitsche contact with rigid obstacle brick', mim_friction, 'u', 'obstacle', 'gamma0', GAMMAC, theta);
else
gf_model_set(md, 'add Nitsche contact with rigid obstacle brick', mim_friction, 'u', 'obstacle', 'gamma0', GAMMAC, theta, 'friction_coeff');
end
else
error('Inexistent version');
end
% Solve the problem
if (~solved)
gf_model_get(md, 'test tangent matrix', 1e-6, 10, 0.1);
gf_model_get(md, 'solve', 'max_res', 1E-9, 'very noisy', 'max_iter', niter); % , 'lsearch', 'simplest'); % , 'with pseudo potential');
end;
U = gf_model_get(md, 'variable', 'u');
% lambda_n = gf_model_get(md, 'variable', 'lambda_n');
VM = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
'u', 'clambda', 'cmu', mfvm);
% set a custom colormap
% r=[0.7 .7 .7]; l = r(end,:); s=63; s1=20; s2=25; s3=48;s4=55; for i=1:s, c1 = max(min((i-s1)/(s2-s1),1),0);c2 = max(min((i-s3)/(s4-s3),1),0); r(end+1,:)=(1-c2)*((1-c1)*l + c1*[1 0 0]) + c2*[1 .8 .2]; end; colormap(r);
figure(2);
if (d == 3)
c=[0.1;0;20]; x=[1;0;0]; y=[0;1;0]; z=[0;0;1];
% Whole boundary
% sl2=gf_slice({'boundary',{'none'}}, m, 5);
% Slice, 3 planes
% sl2=gf_slice({'boundary',{'union',{'planar',+1,c,x},{'planar',+1,c,y},{'planar',+1,c,z}}},m,5);
% Slice, 2 planes
% sl2=gf_slice({'boundary',{'union',{'planar',+1,c,x},{'planar',+1,c,y}}},m,5);
% Slice, 1 plane
sl2=gf_slice({'boundary',{'planar',+1,c,x}}, m, 5);
P=gf_slice_get(sl2,'pts'); dP=gf_compute(mfu,U,'interpolate on',sl2);
gf_slice_set(sl2, 'pts', P+dP);
VMsl=gf_compute(mfvm,VM,'interpolate on',sl2);
set(gcf,'renderer','zbuffer');
h=gf_plot_slice(sl2,'mesh','on','mesh_slice_edges','off','data',VMsl);
view(-80,-15); axis on; camlight; gf_colormap('chouette');
% gf_plot(mfvm, VM, 'mesh', 'off', 'cvlst', ...
% gf_mesh_get(mfu,'outer faces'), 'deformation', U, ...
% 'deformation_mf', mfu, 'deformation_scale', 1, 'refine', 8);
% view(-5,-10); camlight; colormap(map);
xlabel('x'); ylabel('y'); zlabel('z');
title('Sliced deformed configuration (not really a small deformation of course ...)');
else
gf_plot(mfvm, VM, 'deformed_mesh', 'on', 'deformation', U, ...
'deformation_mf', mfu, 'deformation_scale', 1, 'refine', 8);
map=[1:-1/10:0]'*[0.6 0.6 0.4]; colormap(map); % for NB
xlabel('x'); ylabel('y');
title('Deformed configuration (not really a small deformation of course ...)');
end;
colorbar;
pause(0.1);
|