File: demo_structural_optimization.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (420 lines) | stat: -rw-r--r-- 13,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
% Copyright (C) 2009-2016 Alassane SY, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
%
%  Shape optimization of a structure with a coupling between topological and
%  shape gradient (with a fictitious domain approach).
%
%  This program is used to check that matlab-getfem is working. This is
%  also a good example of use of GetFEM++.
%





clear all;
gf_workspace('clear all');

% parameters

TEST_CASE = 1 % 0 : 2D, initial holes, shape gradient only
              % 1 : 2D, no initial hole, coupling with topological gradient
              % 2 : 3D, initial holes, shape gradient only
              % 3 : 3D, no initial hole, coupling with topological gradient

switch TEST_CASE
  case 0,
    N = 2;
    initial_holes = 1;
  case 1,
    N = 2;
    initial_holes = 0;
  case 2,
    N = 3;
    initial_holes = 1;
  case 3,
    N = 3;
    initial_holes = 0;
end

k = 1;                 % Degree of the finite element method for u
lambda = 1;            % Lame coefficient
mu = 1;                % Lame coefficient

if (N == 2)
  NY = 80              % Number of elements in y direction
  level_set_rate = 0.4 / NY
  reinitialisation_time = 0.005;
  threshold_shape = 0.90;
  if (TEST_CASE == 1)
    threshold_topo  = 1.3;
  else
    threshold_topo  = 0;
  end
  penalty_param = 1E-6;
  nbiter = 400;
  NBDRAW = 20;            % Draw solution each NBDRAW iterations
else
  NY = 30
  level_set_rate = 0.025 / NY;
  reinitialisation_time = 0.0035;
  threshold_shape = 28;
  if (TEST_CASE == 3)
    threshold_topo = 30;
  else
    threshold_topo = 0;
  end
  penalty_param = 1E-6;
  nbiter = 600;
  NBDRAW = 5;            % Draw solution each NBDRAW iterations
end;
hole_radius = max(0.03, 2./NY);  % Hole radius for topological optimization
ls_degree = 1;         % Degree of the level-set. Should be one for the moment.
DEBUG = 0;
if (DEBUG)
  NG = 3;
else
  NG = 2;
end;

% Mesh definition
% m=gfMesh('cartesian', -1:(1/NY):1, -.5:(1/NY):.5);
if (N == 2)
  m=gfMesh('regular simplices', -1:(1/NY):1, -.5:(1/NY):.5);
else
  m=gfMesh('regular simplices', -1:(1/NY):1, -.5:(1/NY):.5, -.5:(1/NY):.5);
end;
pts =  gf_mesh_get(m, 'pts');

% Find the boundary GammaD and GammaN
pidleft = find((abs(pts(1, :)+1.0) < 1E-7));
fidleft = gf_mesh_get(m, 'faces from pid', pidleft);
normals = gf_mesh_get(m, 'normal of faces', fidleft);
fidleft=fidleft(:,find(abs(normals(1, :)+1) < 1E-3));
GAMMAD = 2;
gf_mesh_set(m, 'region', GAMMAD, fidleft);

pidright = find((abs(pts(1, :)-1.0) < 1E-7));
fidright = gf_mesh_get(m, 'faces from pid', pidright);
normals = gf_mesh_get(m, 'normal of faces', fidright);
fidright=fidright(:,find(abs(normals(1, :)-1) < 1E-3));
GAMMAN = 3;
gf_mesh_set(m, 'region', GAMMAN, fidright);


% Definition of the finite element methods
ls=gfLevelSet(m, ls_degree);
mls=gfMeshLevelSet(m);
set(mls, 'add', ls);
mf_ls=gfObject(get(ls, 'mf'));
if (N == 2)
  mimls=gfMeshIm(m, gf_integ('IM_TRIANGLE(4)'));
else
  mimls=gfMeshIm(m, gf_integ('IM_TETRAHEDRON(5)'));   
end;
mf_basic=gfMeshFem(m, N);
gf_mesh_fem_set(mf_basic,'fem',gf_fem(sprintf('FEM_PK(%d,%d)', N, k)));
mf_g=gfMeshFem(m, 1);
gf_mesh_fem_set(mf_g,'fem', gf_fem(sprintf('FEM_PK_DISCONTINUOUS(%d,%d)', N, k-1)));
mf_cont=gfMeshFem(m, N);
gf_mesh_fem_set(mf_cont,'fem', gf_fem(sprintf('FEM_PK(%d,%d)', N, ls_degree)));
disp(sprintf('There is %d elasticity dofs', gf_mesh_fem_get(mf_basic, 'nbdof')));

disp('Computation of mass matrices and preconditioners');
ti = cputime;
Mcont = gf_asm('mass matrix', mimls, mf_cont);
RMcont = cholinc(Mcont, '0');
Mcontls = gf_asm('mass matrix', mimls, mf_ls);
RMcontls = cholinc(Mcontls, '0');
disp(sprintf('Computation done in %g seconds', cputime-ti));

% Definition of the initial level-set
if (initial_holes)
  if (N == 2)
    ULS=gf_mesh_fem_get(mf_ls, 'eval', ...
        { '(-0.6-sin(pi*4*x).*cos(pi*4*y))/(4*pi)' });
  else
    ULS=gf_mesh_fem_get(mf_ls, 'eval', ...
        { '(-0.6-sin(pi*4*x).*cos(pi*4*y).*cos(pi*4*z))/(4*pi)' });
  end
else
  ULS=gf_mesh_fem_get(mf_ls, 'eval', { 'x - 2' });
end;

% Level-set nodes
P=get(mf_ls, 'basic dof nodes');

% Force on the right part (Neumann condition)
if (N == 2)
  F = gf_mesh_fem_get(mf_basic, 'eval', {'0', '-(abs(y) < 0.05)'});
else
  F = gf_mesh_fem_get(mf_basic, 'eval', {'0', '0', '-20*(abs(y) < 0.05).*(abs(z) < 0.05)'});
end;

% Model definition
set(ls, 'values', ULS);
disp('Adapting the mesh');
set(mls, 'adapt');
if (N == 2)
  mim = gfMeshIm('levelset',mls,'inside', gf_integ('IM_TRIANGLE(6)'));
else
  mim = gfMeshIm('levelset',mls,'inside', gf_integ('IM_TETRAHEDRON(6)'));
end;
disp('Mesh adapted');
set(mim, 'integ', 4);
disp('Integration methods adapted');
mf = gf_mesh_fem('partial', mf_basic, 1:gf_mesh_fem_get(mf_basic, 'nbdof'));

md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
gf_model_set(md, 'add initialized data', 'mu', [mu]);
gf_model_set(md, 'add initialized data', 'lambda', [lambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', ...
             'lambda', 'mu');
% gf_model_set(md, 'add Dirichlet condition with multipliers', ...
%             mim, 'u', 1, GAMMAD);
gf_model_set(md,'add Dirichlet condition with penalization', mim, ...
      'u', 1E5, GAMMAD);
gf_model_set(md, 'add initialized data', 'penalty_param', [penalty_param]);
gf_model_set(md, 'add mass brick', mim, 'u', 'penalty_param');
gf_model_set(md, 'add initialized fem data', 'Force', mf_basic, F);
gf_model_set(md, 'add source term brick', mim, 'u', 'Force', GAMMAN);



% Optimization loop
for niter = 1:nbiter
  ti = cputime;
  gf_workspace('push');

  if (niter > 1)
    set(ls, 'values', ULS);
    disp('Adapting the mesh');
    set(mls, 'adapt');
    disp('Mesh adapted');
    set(mim, 'adapt');
    disp('Integration methods adapted');
  end;

  M = gf_asm('mass matrix', mim, mf_basic);
  D = abs(full(diag(M)));
  ind = find(D > (1/NY)^N/10000000);
  gf_mesh_fem_set(mf, 'set partial', ind); 
  % mf = gf_mesh_fem('partial', mf_basic, ind);

  % Solving the direct problem
  disp('solving the direct problem');
  gf_model_get(md, 'solve', 'max_res', 1E-7); % ,'noisy');
  U = gf_model_get(md, 'variable', 'u');
  nbd = gf_mesh_fem_get(mf_ls, 'nbdof');
  
  % Computation of indicators (computation of K could be avoided)
  K = gf_asm('linear elasticity', mim, mf, mf_ls, lambda*ones(1, nbd), ...
             mu*ones(1, nbd));
  disp(sprintf('Elastic energy at iteration %d: %g', niter, U*K*U'));
  S = gf_asm('volumic','V()+=comp()',mim);
  if (N == 2)
    disp(sprintf('Remaining surface of material: %g', S));
  else
    disp(sprintf('Remaining volume of material: %g', S));
  end

  DU = gf_compute(mf, U, 'gradient', mf_g);
  EPSU = DU + permute(DU, [2 1 3]);
  
  % Computation of the shape derivative
  if (N == 2)
    GF1 = (DU(1,1,:) + DU(2,2,:)).^2*lambda + 2*mu*(sum(sum(EPSU.^2, 1), 2));
  else
    GF1 = (DU(1,1,:) + DU(2,2,:) + DU(3,3,:)).^2*lambda + 2*mu*(sum(sum(EPSU.^2, 1), 2));
  end;
  GF = reshape(GF1, 1, size(GF1, 3)) - threshold_shape;
  
  % computation of the topological gradient
  if (N == 2)
     GT = -pi*( (lambda+2*mu) / (2*mu*(lambda+mu)) * (4*mu*GF1 + ...
          2*(lambda-mu)*(lambda+mu)*(DU(1,1,:) + DU(2,2,:)).^2));
  else
     GT = -pi*( (lambda+2*mu) / (mu*(9*lambda+14*mu)) * (20*mu*GF1 + ...
        2*(3*lambda-2*mu)*(lambda+mu)*(DU(1,1,:) + DU(2,2,:) + DU(3,3,:)).^2));
  end;
  GT = reshape(GT, 1, size(GT, 3)) + threshold_topo;
  
  % filtering the gradients
  M = gf_asm('mass matrix', mim, mf_g);
  D = abs(full(diag(M)));
  maxD = max(D);
  ind = find(D < maxD/40);
  % Extension of the gradient into the hole. Too rough ?
  GF(ind) = GF(ind) * 0;
  % Threshold on the gradient
  GF = min(GF, 2*threshold_shape);
  ind = find(D < maxD/1.2);
  GT(ind) = GT(ind) * 0 - 20;

  % Drawing the gradients
  if (mod(niter, NBDRAW) == 0 || niter == 1)
    if (N == 2)
      subplot(NG,1,1);
      gf_plot(mf_g, GF, 'disp_options', 'off', 'refine', 1);
      title('Shape gradient');
      hold on;
      [h1,h2]=gf_plot(mf_ls, ULS, 'contour', 0,'pcolor', ...
                      'off', 'disp_options', 'off', 'refine', 3);
      set(h2{1},'LineWidth',1);
      set(h2{1},'Color','black');
      hold off;
      colorbar;
      if (DEBUG == 0)
        subplot(NG,1,2);
        % gf_plot(mf_g, GT, 'disp_options', 'off', 'disp_options');
        % title('Topological gradient');
        gf_plot(mf_ls, ULS, 'disp_options', 'off', 'refine', 3);
        hold on;
        [h1,h2]=gf_plot(mf_ls, ULS, 'contour', 0,'pcolor', ...
                    'off', 'disp_options', 'off', 'refine', 3);
        set(h2{1},'LineWidth',1);
        set(h2{1},'Color','black');
        hold off;
        title('Level set function');
        colorbar; 
      end; 
      pause(0.3);
    else
      sl=gf_slice({'boundary', {'isovalues', -1, mf_ls, ULS, 0.0}}, m, 5);
      % sl=gf_slice({'isovalues', 0, mf_ls, ULS, 0.0}, m, 5);
      Usl=gf_compute(mf_g, GF,'interpolate on',sl);
      % P=gf_slice_get(sl,'pts'); P=P([1 3 2],:); gf_slice_set(sl,'pts',P);
      gf_plot_slice(sl,'data',Usl,'mesh','on','mesh_slice_edges_color', ...
                    [.7 .7 .7],'mesh_edges_color',[.5 .5 1]);
      colorbar;
      title('Shape gradient on the remaining volume');
      pause(0.3);
    end
    print(gcf,'-dpng','-r450', sprintf('demo_structural_optimi%dD_%d_%d_%d', N, niter, initial_holes, NY));
  end

  [val, i] = max(GT);
  disp(sprintf('Max value of the topological gradient: %g', val));

  % Making a new hole (topological optimization)
  if (val > 0)
    point = gf_mesh_fem_get(mf_g, 'basic dof nodes', [i]);
    if (N == 2) 
      disp(sprintf('Making a new hole whose center is (%g, %g)', point(1), point(2)));
      ULS = max(ULS, (hole_radius^2 - (P(1,:) - point(1)).^2 - ...
                (P(2,:) - point(2)).^2)/(2*hole_radius));
    else
      disp(sprintf('Making a new hole whose center is (%g, %g, %g)', point(1), point(2), point(3)));
      ULS = max(ULS, (hole_radius^2 - (P(1,:) - point(1)).^2 - ...
                (P(2,:) - point(2)).^2 - (P(3,:) - point(3)).^2)/(2*hole_radius));
    end;
  end;    
  

  % Evolution of the level-set thanks to shape derivative. Simple version.
  
  Fdisc = gf_asm('volumic source', mimls, mf_ls, mf_g, GF);
  % Vcont = Mcontls \ Fdisc;
  Vcont = cgs(Mcontls, Fdisc, 1e-8, 100000, RMcontls);
  ULS = ULS - Vcont' * level_set_rate;


  % Evolution of the level-set thank to shape derivative.
  % Hamilton-Jacobi equation. Less stable.
  %  dt = 0.006; NT = 10; ddt = dt / NT;
  %  for t = 0:ddt:dt
  %    DLS = gf_compute(mf_ls, ULS, 'gradient', mf_g);
  %    NORMDLS = sqrt(sum(DLS.^2, 1)) + 0.000001;
  %    GFF = GF ./ NORMDLS;
  % 
  %    if (N == 2)
  %      V = DLS.*[GFF; GFF];
  %    else
  %      V = DLS.*[GFF; GFF; GFF];
  %    end;
  %
  %    Fdisc = gf_asm('volumic source', mimls, mf_cont, mf_g, V);
  %    % Vcont = Mcont \ Fdisc;
  %    Vcont = cgs(Mcont, Fdisc, 1e-8, 100000, RMcont);
  %
  %    gf_compute(mf_ls, ULS, 'convect', mf_cont,Vcont,ddt,2, 'extrapolation');
  %  end;

  if (DEBUG && mod(niter, NBDRAW) == 0)
    subplot(NG,1,2);
    gf_plot(mf_ls, ULS, 'disp_options', 'off', 'refine', 3);
    colorbar;
    hold on;
    [h1,h2]=gf_plot(mf_ls, ULS, 'contour', 0,'pcolor', ...
                  'off', 'disp_options', 'off', 'refine', 3);
    set(h2{1},'LineWidth',1);
    set(h2{1},'Color','black');
    hold off;
    disp('Level set function after convection drawn');
    pause(0.3);
  end;
   
  % Re-initialization of the level-set
  dt = reinitialisation_time; NT = 10; ddt = dt / NT;
  ULS0 = ULS;
  for t = ddt:ddt:dt
    DLS = gf_compute(mf_ls, ULS, 'gradient', mf_g);
    Fdisc = gf_asm('volumic source', mimls, mf_cont, mf_g, DLS);
    % DLScont = Mcont \ Fdisc;
    DLScont = cgs(Mcont, Fdisc, 1e-8, 100000, RMcont);
    NORMDLS = sqrt(sum(reshape(DLScont, N, size(DLScont, 1)/N).^2,1))+1e-12;
    SULS = sign(ULS0) ./ NORMDLS;
      
    if (N == 2)
      W = DLScont.*reshape([SULS; SULS], N*size(SULS, 2), 1);
    else
      W = DLScont.*reshape([SULS; SULS; SULS], N*size(SULS, 2), 1);
    end;
  
    gf_compute(mf_ls, ULS, 'convect', mf_cont, W, ddt, 1, 'unchanged');

    ULS = ULS + ddt * sign(ULS0);
  end;

  if (DEBUG && mod(niter, 3) == 0)
    AA = sqrt(sum(DLS.^2, 1));
    disp(sprintf('Norm dls after: %g %g %g %g', AA(1), AA(2), AA(3), AA(4)));
    disp(sprintf('Norm dls after: max = %g, min = %g', max(AA), min(AA)));

    subplot(NG,1,3);
    gf_plot(mf_ls, ULS, 'disp_options', 'off');
    colorbar;
    hold on;
    [h1,h2]=gf_plot(mf_ls, ULS, 'contour', 0,'pcolor', ...
                  'off', 'disp_options', 'off');
    set(h2{1},'LineWidth',1);
    set(h2{1},'Color','black');
    hold off;
    disp('Level set function after re-initialization drawn');
    pause(0.3);
  end;

  gf_workspace('pop');
  disp(sprintf('this iteration took %g minutes', (cputime-ti)/60));
end;