1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
% Copyright (C) 2009-2016 Alassane SY, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% Shape optimization with topological gradient
% (with a fictitious domain approach).
%
% This program is used to check that matlab-getfem is working. This is
% also a good example of use of GetFEM++.
%
gf_workspace('clear all');
% parameters
NX=30;
ls_degree = 1;
alpha = 1;
beta = 1;
rayon_trous = 0.2;
% Finite element and integration methods definition
m=gfMesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
% m=gfMesh('triangles grid', -.5:(1/NX):.5, -.5:(1/NX):.5);
% mim=gfMeshIm(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,4)'));
mf_basic=gfMeshFem(m, 1);
gf_mesh_fem_set(mf_basic,'fem',gf_fem('FEM_QK(2,2)'));
mls=gfMeshLevelSet(m);
ls=gfLevelSet(m, ls_degree);
set(mls, 'add', ls);
mf_ls=gfObject(get(ls, 'mf'));
P=get(mf_ls, 'basic dof nodes');
x = P(1,:); y = P(2,:);
ULS=1000*ones(1,numel(x));
% Loop on the topological optimization
while(1)
gf_workspace('push');
set(ls, 'values', ULS);
set(mls, 'adapt');
mim_bound = gfMeshIm('levelset',mls,'boundary', gf_integ('IM_TRIANGLE(6)'));
mim = gfMeshIm('levelset',mls,'outside', gf_integ('IM_TRIANGLE(6)'));
set(mim, 'integ', 4);
mf_mult=gfMeshFem(m); set(mf_mult, 'fem', gf_fem('FEM_QK(2,1)'));
M = gf_asm('mass matrix', mim, mf_basic);
D = abs(full(diag(M)));
ind = find(D > 1E-8);
mf = gf_mesh_fem('partial', mf_basic, ind);
S = gf_asm('volumic','V()+=comp()',mim);
disp('remaining surface :'); disp(S);
% Problem definition (Laplace(u) + u = f)
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
gf_model_set(md, 'add Laplacian brick', mim, 'u');
gf_model_set(md, 'add fem data', 'VolumicData', mf_basic);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add initialized data', 'rho', [1.]);
gf_model_set(md, 'add mass brick', mim, 'u', 'rho');
gf_model_set(md, 'add multiplier', 'mult_dir', mf_mult, 'u');
% To be completely robust, a stabilization should be used on the Dirichlet
% boundary to ensure the inf-sup condition (Nitsche or Barbosa-Hughes)
gf_model_set(md, 'add Dirichlet condition with multipliers', ...
mim_bound, 'u', 'mult_dir', -1);
% Solving the direct problem.
U0 = gf_mesh_fem_get(mf_basic, 'eval', ...
{ '0.4*(3.*sin(pi*(x+y)) + ((x-0.5).^10 + (y-0.5).^10 + (x+0.5).^10 + (y+0.5).^10))' });
gf_model_set(md, 'variable', 'VolumicData', U0);
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
subplot(2,1,1);
gf_plot(mf, U);
hold on;
[h1,h2]=gf_plot(mf_ls, get(ls,'values'), 'contour', 0,'pcolor','off');
set(h2{1},'LineWidth',2);
set(h2{1},'Color','green');
colorbar;
title('u');
hold off;
% Solving the adjoint problem.
UBASIC = gf_compute(mf, U, 'interpolate on', mf_basic);
F = 2*(UBASIC-U0);
gf_model_set(md, 'variable', 'VolumicData', F);
gf_model_get(md, 'solve');
W = gf_model_get(md, 'variable', 'u');
% Computation of the topological gradient
mf_g=gfMeshFem(m, 1);
gf_mesh_fem_set(mf_g,'fem', ...
gf_fem('FEM_PRODUCT(FEM_PK_DISCONTINUOUS(1,2),FEM_PK_DISCONTINUOUS(1,2))'));
DU = gf_compute(mf, U, 'gradient', mf_g);
DW = gf_compute(mf, W, 'gradient', mf_g);
nbdof = gf_mesh_fem_get(mf_g, 'nbdof');
DU = reshape(DU, 2, nbdof);
DW = reshape(DW, 2, nbdof);
UU = gf_compute(mf, U, 'interpolate on', mf_g);
UU0 = gf_compute(mf_basic, U0, 'interpolate on', mf_g);
LS = gf_compute(mf_ls, ULS, 'interpolate on', mf_g);
G = (-4*pi*( alpha*(DU(1,:).^2 + DU(2,:).^2 + DU(1,:).*DW(1,:) + ...
DU(2,:).*DW(2,:)) + beta*(UU-UU0).^2)) .* (sign(LS)+1.)/2;
subplot(2,1,2);
gf_plot(mf_g, G);
title('Topological gradient');
colorbar;
pause(0.01);
% Find the point where the topological gradient is minimum
[val, i] = min(G);
if (val >= -12)
disp('Topological optimization finished.');
return;
end;
point = gf_mesh_fem_get(mf_g, 'basic dof nodes', [i]);
gf_workspace('pop');
% Updating the level set to add the hole
R = -(val+7) / 200;
xc = point(1);
yc = point(2);
ULS = min(ULS, ((x - xc).^2 + (y - yc).^2) - R^2);
end;
|