1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
% Copyright (C) 2005-2016 Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
disp('This demo is an adaption of the original tripod demo')
disp('which uses the "brick" framework of getfem')
disp('You can easily switch between linear/non linear')
disp('compressible/incompressible elasticity!')
linear = true;
incompressible = false;
gf_workspace('clear all');
% import the mesh
m=gfMesh('import','gid','../meshes/tripod.GiD.msh');
mfu=gfMeshFem(m,3); % mesh-fem supporting a 3D-vector field
mfd=gfMeshFem(m,1); % scalar mesh_fem, for data fields.
% the mesh_im stores the integration methods for each tetrahedron
mim=gfMeshIm(m,gf_integ('IM_TETRAHEDRON(5)'));
% we choose a P2 fem for the main unknown
gf_mesh_fem_set(mfu,'fem',gf_fem('FEM_PK(3,2)'));
% the material is homogeneous, hence we use a P0 fem for the data
gf_mesh_fem_set(mfd,'fem',gf_fem('FEM_PK(3,0)'));
% display some informations about the mesh
disp(sprintf('nbcvs=%d, nbpts=%d, nbdof=%d',gf_mesh_get(m,'nbcvs'),...
gf_mesh_get(m,'nbpts'),gf_mesh_fem_get(mfu,'nbdof')));
P=gf_mesh_get(m,'pts'); % get list of mesh points coordinates
pidtop=find(abs(P(2,:)-13)<1e-6); % find those on top of the object
pidbot=find(abs(P(2,:)+10)<1e-6); % find those on the bottom
% build the list of faces from the list of points
ftop=gf_mesh_get(m,'faces from pid',pidtop);
fbot=gf_mesh_get(m,'faces from pid',pidbot);
% assign boundary numbers
gf_mesh_set(m,'boundary',1,ftop);
gf_mesh_set(m,'boundary',2,fbot);
E = 1e3; Nu = 0.3;
% set the Lame coefficients
lambda = E*Nu/((1+Nu)*(1-2*Nu));
mu = E/(2*(1+Nu));
% create a meshfem for the pressure field (used if incompressible ~= 0)
mfp=gfMeshFem(m); set(mfp, 'fem',gfFem('FEM_PK_DISCONTINUOUS(3,0)'));
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
if (linear)
% the linearized elasticity , for small displacements
gf_model_set(md, 'add initialized data', 'cmu', [mu]);
gf_model_set(md, 'add initialized data', 'clambda', [lambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', 'clambda', 'cmu');
if (incompressible)
gf_model_set(md, 'add fem variable', 'p', mfp);
gf_model_set(md, 'add linear incompressibility brick', mim, 'u', 'p');
end;
else
params = [lambda;mu];
gf_model_set(md,'add initialized data','params', params);
if (incompressible)
lawname = 'Incompressible Mooney Rivlin';
gf_model_set(md, 'add finite strain elasticity brick', mim, lawname, 'u', 'params');
gf_model_set(md, 'add fem variable', 'p', mfp);
gf_model_set(md, 'add finite strain incompressibility brick', mim, 'u', 'p');
else
lawname = 'SaintVenant Kirchhoff';
gf_model_set(md, 'add finite strain elasticity brick', mim, lawname, 'u', 'params');
end;
end
% set a vertical force on the top of the tripod
gf_model_set(md, 'add initialized data', 'VolumicData', [0;-10;0]);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
% attach the tripod to the ground
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mfu, 2);
disp('running solve...')
t0=cputime;
gf_model_get(md, 'solve', 'noisy', 'max iter', 1);
U = gf_model_get(md, 'variable', 'u');
disp(sprintf('solve done in %.2f sec', cputime-t0));
mfdu=gf_mesh_fem(m,1);
% the P2 fem is not derivable across elements, hence we use a discontinuous
% fem for the derivative of U.
gf_mesh_fem_set(mfdu,'fem',gf_fem('FEM_PK_DISCONTINUOUS(3,1)'));
if (linear)
VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'clambda', 'cmu', mfdu);
else
VM = gf_model_get(md, 'compute finite strain elasticity Von Mises', lawname, 'u', 'params', mfdu);
end
disp('plotting ... ');
% we plot the von mises on the deformed object, in superposition
% with the initial mesh.
if (linear),
gf_plot(mfdu,VM,'mesh','on', 'cvlst', get(m, 'outer faces'),...
'deformation',U,'deformation_mf',mfu);
else
gf_plot(mfdu,VM,'mesh','on', 'cvlst', get(m, 'outer faces'),...
'deformation',U,'deformation_mf',mfu,'deformation_scale',1);
end;
caxis([0 100]);
colorbar; view(180,-50); camlight;
gf_colormap('tripod');
% the von mises stress is exported into a VTK file
% (which can be viewed with 'mayavi -d tripod.vtk -m BandedSurfaceMap')
% see http://mayavi.sourceforge.net/
gf_mesh_fem_get(mfdu,'export to vtk','tripod.vtk','ascii',VM,'vm')
|