1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
% Copyright (C) 2005-2016 Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
gf_workspace('clear all');
disp('2D scalar wave equation (helmholtz) demonstration');
disp(' we present three approaches for the solution of the helmholtz problem')
disp(' - the first one is to use the new getfem "model bricks"')
disp(' - the second one is to use the old getfem "model bricks"')
disp(' - the third one is to use the "low level" approach, i.e. to assemble')
disp(' and solve the linear systems.')
disp('The result is the wave scattered by a disc, the incoming wave beeing a plane wave coming from the top');
disp(' \delta u + k^2 = 0');
disp(' u = -uinc on the interior boundary');
disp(' \partial_n u + iku = 0 on the exterior boundary');
%PK = 10; gt_order = 6; k = 7; use_hierarchical = 0; load_the_mesh=0;
PK=3; gt_order = 3; k = 1; use_hierarchical = 1; load_the_mesh=1;
if (use_hierarchical) s = 'hierarchical'; else s = 'classical'; end;
disp(sprintf('using %s P%d FEM with geometric transformations of degree %d',s,PK,gt_order));
if (load_the_mesh),
disp('the mesh is loaded from a file, gt_order ignored');
end;
if load_the_mesh == 0,
% a quadrangular mesh is generated, with a high degree geometric transformation
% number of cells for the regular mesh
Nt=10; Nr=8;
m=gfMesh('empty',2);
dtheta=2*pi*1/Nt; R=1+9*(0:Nr-1)/(Nr-1);
gt=gfGeoTrans(sprintf('GT_PRODUCT(GT_PK(1,%d),GT_PK(1,1))',gt_order));
ddtheta=dtheta/gt_order;
for i=1:Nt;
for j=1:Nr-1;
ti=(i-1)*dtheta:ddtheta:i*dtheta;
X = [R(j)*cos(ti) R(j+1)*cos(ti)];
Y = [R(j)*sin(ti) R(j+1)*sin(ti)];
m.set('add convex',gt,[X;Y]);
end;
end;
fem_u=gfFem(sprintf('FEM_QK(2,%d)',PK));
fem_d=gfFem(sprintf('FEM_QK(2,%d)',PK));
mfu=gfMeshFem(m,1);
mfd=gfMeshFem(m,1);
mfu.set('fem',fem_u);
mfd.set('fem',fem_d);
sIM=sprintf('IM_GAUSS_PARALLELEPIPED(2,%d)',gt_order+2*PK);
mim=gfMeshIm(m, gfInteg(sIM));
else
% the mesh is loaded
m=gfMesh('import','gid','../meshes/holed_disc_with_quadratic_2D_triangles.msh');
if (use_hierarchical),
% hierarchical basis improve the condition number
% of the final linear system
fem_u=gfFem(sprintf('FEM_PK_HIERARCHICAL(2,%d)',PK));
%fem_u=gfFem('FEM_HCT_TRIANGLE');
%fem_u=gfFem('FEM_HERMITE(2)');
else,
fem_u=gfFem(sprintf('FEM_PK(2,%d)',PK));
end;
fem_d=gfFem(sprintf('FEM_PK(2,%d)',PK));
mfu=gfMeshFem(m,1);
mfd=gfMeshFem(m,1);
set(mfu,'fem',fem_u);
set(mfd,'fem',fem_d);
mim=gfMeshIm(m,gfInteg('IM_TRIANGLE(13)'));
end;
nbdu=mfu.nbdof;
nbdd=mfd.nbdof;
% identify the inner and outer boundaries
P=m.pts; % get list of mesh points coordinates
pidobj=find(sum(P.^2) < 1*1+1e-6);
pidout=find(sum(P.^2) > 10*10-1e-2);
% build the list of faces from the list of points
fobj=get(m,'faces from pid',pidobj);
fout=get(m,'faces from pid',pidout);
set(m,'boundary',1,fobj);
set(m,'boundary',2,fout);
% expression of the incoming wave
wave_expr=sprintf('cos(%f*y+.2)+1i*sin(%f*y+.2)',k,k);
Uinc=get(mfd,'eval',{wave_expr});
% we present two approaches for the solution of the Helmholtz problem
% - the first one is to use the getfem "model bricks"
% - the second one is to use the "low level" approach, i.e. to assemble
% and solve the linear systems.
if 1,
t0=cputime;
% solution using new model bricks
md=gf_model('complex');
gf_model_set(md, 'add fem variable', 'u', mfu);
gf_model_set(md, 'add initialized data', 'k', [k]);
gf_model_set(md, 'add Helmholtz brick', mim, 'u', 'k');
gf_model_set(md, 'add initialized data', 'Q', [1i*k]);
gf_model_set(md, 'add Fourier Robin brick', mim, 'u', 'Q', 2);
gf_model_set(md, 'add initialized fem data', 'DirichletData', mfd, Uinc);
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mfd, 1, 'DirichletData');
% gf_model_set(md, 'add Dirichlet condition with penalization', mim, 'u', 1e12, 1, 'DirichletData');
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
disp(sprintf('solve done in %.2f sec', cputime-t0));
else
% solution using the "low level" approach
[H,R] = gf_asm('dirichlet', 1, mim, mfu, mfd, gf_mesh_fem_get(mfd,'eval',1),Uinc);
[null,ud]=gf_spmat_get(H,'dirichlet nullspace', R);
Qb2 = gf_asm('boundary qu term', 2, mim, mfu, mfd, ones(1,nbdd));
M = gf_asm('mass matrix',mim, mfu);
L = -gf_asm('laplacian',mim, mfu,mfd,ones(1,nbdd));
% builds the matrix associated to
% (\Delta u + k^2 u) inside the domain, and
% (\partial_n u + ik u) on the exterior boundary
A=L + (k*k) * M + (1i*k)*Qb2;
% eliminate dirichlet conditions and solve the system
RF=null'*(-A*ud(:));
RK=null'*A*null;
U=null*(RK\RF)+ud(:);
U=U(:).';
end;
Ud=gf_compute(mfu,U,'interpolate on',mfd);
%figure(1); gf_plot(mfu,imag(U(:)'),'mesh','on','refine',32,'contour',0); colorbar;
%figure(2); gf_plot(mfd,abs(Ud(:)'),'mesh','on','refine',24,'contour',0.5); colorbar;
% compute the "exact" solution from its developpement
% of bessel functions:
% by \Sum_n c_n H^(1)_n(kr)exp(i n \theta)
N=1000; theta=2*pi*(0:N-1)/N; y=sin(theta);
w = eval(wave_expr);
fw = fft(w); C=fw/N;
S = zeros(size(w)); S(:) = C(1); Nc=20;
for i=2:Nc,
n=i-1;
S = S + C(i)*exp(1i*n*theta) + C(N-(n-1))*exp(-1i*n*theta);
end;
P=gf_mesh_fem_get(mfd,'basic dof nodes');
[T,R]=cart2pol(P(1,:),P(2,:));
Uex=zeros(size(R));
nbes=1;
Uex=besselh(0,nbes,k*R) * C(1)/besselh(0,nbes,k);
for i=2:Nc,
n=i-1;
Uex = Uex + besselh(n,nbes,k*R) * C(i)/besselh(n,nbes,k) .* exp(1i*n*T);
Uex = Uex + besselh(-n,nbes,k*R) * C(N-(n-1))/besselh(-n,nbes,k) .* exp(-1i*n*T);
end;
disp('The error won''t be less than ~1e-2 as long as a first order absorbing boundary condition will be used');
disp(sprintf('rel error ||Uex-U||_inf=%g',max(abs(Ud-Uex))/max(abs(Uex))));
disp(sprintf('rel error ||Uex-U||_L2=%g',...
gf_compute(mfd,Uex-Ud,'L2 norm',mim)/gf_compute(mfd,Uex,'L2 norm',mim)));
disp(sprintf('rel error ||Uex-U||_H1=%g',...
gf_compute(mfd,Uex-Ud,'H1 norm',mim)/gf_compute(mfd,Uex,'H1 norm',mim)));
% adjust the 'refine' parameter to enhance the quality of the picture
gf_plot(mfu,real(U(:)'),'mesh','on','refine',8);
|