1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
% Copyright (C) 2008-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
% Simple demo of a wave equation solved with a Newmark scheme with the
% Getfem tool for time integration schemes
gf_workspace('clear all');
m = gf_mesh('cartesian',[0:.2:1],[0:.2:1]);
% m=gf_mesh('import','structured','GT="GT_QK(2,1)";SIZES=[1,1];NOISED=1;NSUBDIV=[1,1];')
% create a mesh_fem of for a field of dimension 1 (i.e. a scalar field)
mf = gf_mesh_fem(m,1);
% assign the Q2 fem to all convexes of the mesh_fem,
gf_mesh_fem_set(mf,'fem',gf_fem('FEM_QK(2,2)'));
% Integration which will be used
mim = gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,4)'));
% detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
gf_mesh_set(m, 'boundary', 1, border);
% interpolate the initial data
U0 = gf_mesh_fem_get(mf, 'eval', { 'y.*(y-1).*x.*(x-1).*x.*x' });
V0 = 0*U0;
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
gf_model_set(md, 'add Laplacian brick', mim, 'u');
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf, 1);
% transient part.
T = 15.0;
dt = 0.025;
beta = 0.25;
gamma = 0.5;
gf_model_set(md, 'add Newmark scheme', 'u', beta, gamma);
gf_model_set(md, 'add mass brick', mim, 'Dot2_u');
gf_model_set(md, 'set time step', dt);
% Initial data.
gf_model_set(md, 'variable', 'Previous_u', U0);
gf_model_set(md, 'variable', 'Previous_Dot_u', V0);
% Initialisation of the acceleration 'Previous_Dot2_u'
gf_model_set(md, 'perform init time derivative', dt/20.);
gf_model_get(md, 'solve');
% Iterations
for t = 0:dt:T
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
V = gf_model_get(md, 'variable', 'Dot_u');
subplot(2,1,1); gf_plot(mf, U, 'mesh', 'on', 'contour', .01:.01:.1);
colorbar; title(sprintf('computed solution u for t=%g', t));
subplot(2,1,2); gf_plot(mf, V, 'mesh', 'on', 'contour', .01:.01:.1);
colorbar; title(sprintf('computed solution du/dt for t=%g', t));
pause(0.1);
gf_model_set(md, 'shift variables for time integration');
end;
|