File: demo_wheel_contact.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (165 lines) | stat: -rw-r--r-- 6,345 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% Copyright (C) 2015-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

%
% Contact of a deformable 'wheel' onto a plane deformable obstacle.
%

view_mesh = true;
Dirichlet_version = false; % A Dirichlet condition instead of the applied load

%
% Physical parameters
%
E = 21E6;                         % Young Modulus (N/cm^2)
nu = 0.3;                         % Poisson ratio
clambda = E*nu/((1+nu)*(1-2*nu)); % First Lame coefficient (N/cm^2)
cmu = E/(2*(1+nu));               % Second Lame coefficient (N/cm^2)
clambdastar = 2*clambda*cmu/(clambda+2*cmu); % Lame coefficient for Plane stress (N/cm^2)
applied_force = 1E7;              % Force at the hole boundary (N)


%
% Numerical parameters
%
h = 4;                   % Approximate mesh size
elements_degree = 2;     % Degree of the finite element methods
gamma0 = 1./E;           % Augmentation parameter for the augmented Lagrangian 

%
% Mesh generation. Meshes can also been imported from several formats.
%
mo1 = gfMesherObject('ball', [0., 15.], 15.);
mo2 = gfMesherObject('ball', [0., 15.], 8.);
mo3 = gfMesherObject('set minus', mo1, mo2);

disp('Meshes generation');
gf_util('trace level', 1)   % No trace for mesh generation nor for assembly
mesh1 = gfMesh('generate', mo3, h, 2);
mesh2 = gfMesh('import','structured', sprintf('GT="GT_PK(2,1)";SIZES=[30,10];NOISED=0;NSUBDIV=[%d,%d];', floor(30/h)+1, floor(10/h)+1));
mesh2.translate([-15.;-10.]);


if (view_mesh)
  figure(2);
  gf_plot_mesh(mesh1);
  hold on;
  gf_plot_mesh(mesh2);
  hold off;
  pause(1);
end

%
% Boundary selection
%
fb1 = mesh1.outer_faces_in_box([-8.1, 6.9], [8.1, 23.1]);  % Boundary of the hole
fb2 = mesh1.outer_faces_with_direction([0., -1.], pi/4.5);  % Contact boundary of the wheel
fb3 = mesh2.outer_faces_with_direction([0., -1.], 0.01);   % Bottom boundary of the foundation

HOLE_BOUND=1; CONTACT_BOUND=2; BOTTOM_BOUND=3;

mesh1.set_region(HOLE_BOUND, fb1);
mesh1.set_region(CONTACT_BOUND, fb2);
mesh1.region_subtract(CONTACT_BOUND, HOLE_BOUND);
mesh2.set_region(BOTTOM_BOUND, fb3);


%
% Definition of finite elements methods and integration method
%

mfu1 = gfMeshFem(mesh1, 2);
mfu1.set_classical_fem(elements_degree);
mflambda = gfMeshFem(mesh1, 2);
mflambda.set_classical_fem(elements_degree-1);
mflambda_C = gfMeshFem(mesh1, 1);
mflambda_C.set_classical_fem(elements_degree-1);
mfu2 = gfMeshFem(mesh2, 2);
mfu2.set_classical_fem(elements_degree);
mfvm1 = gfMeshFem(mesh1, 1);
mfvm1.set_classical_discontinuous_fem(elements_degree);
mfvm2 = gfMeshFem(mesh2, 1);
mfvm2.set_classical_discontinuous_fem(elements_degree);
mim1  = gfMeshIm(mesh1, 6);
mim1c = gfMeshIm(mesh1, gfInteg('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(4),4)'));
mim2  = gfMeshIm(mesh2, 4);


%
% Model definition
%

md=gfModel('real');
md.add_fem_variable('u1', mfu1);       % Displacement of the structure 1
md.add_fem_variable('u2', mfu2);       % Displacement of the structure 2

md.add_initialized_data('cmu', [cmu]);
md.add_initialized_data('clambdastar', [clambdastar]);
md.add_isotropic_linearized_elasticity_brick(mim1, 'u1', 'clambdastar', 'cmu');
md.add_isotropic_linearized_elasticity_brick(mim2, 'u2', 'clambdastar', 'cmu');
md.add_Dirichlet_condition_with_multipliers(mim2, 'u2', elements_degree-1, BOTTOM_BOUND);



% Contact condition (augmented Lagrangian)
md.add_initialized_data('gamma0', [gamma0]);
md.add_interpolate_transformation_from_expression('Proj1', mesh1, mesh2, '[X(1);0]');
md.add_filtered_fem_variable('lambda1', mflambda_C, CONTACT_BOUND);
md.add_nonlinear_generic_assembly_brick(mim1c, 'lambda1*(Test_u1.[0;1])-lambda1*(Interpolate(Test_u2,Proj1).[0;1])', CONTACT_BOUND);
md.add_nonlinear_generic_assembly_brick(mim1c, '-(gamma0*element_size)*(lambda1 + neg_part(lambda1+(1/(gamma0*element_size))*((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).[0;1])))*Test_lambda1', CONTACT_BOUND);

% Prescribed force in the hole (or Dirichlet condition)
if (Dirichlet_version)
  md.add_initialized_data('DData', [0., -1.0]);
  md.add_Dirichlet_condition_with_multipliers(mim1, 'u1', elements_degree-1, HOLE_BOUND, 'DData');
else
  md.add_filtered_fem_variable('lambda_D', mflambda, HOLE_BOUND);
  md.add_initialized_data('F', [applied_force/(8.*2.*pi)]);
  md.add_variable('alpha_D', 1);
  md.add_linear_generic_assembly_brick(mim1, '-lambda_D.Test_u1 + (alpha_D*[0;1] - u1).Test_lambda_D + (lambda_D.[0;1] + F)*Test_alpha_D + 1E-6*alpha_D*Test_alpha_D', HOLE_BOUND);
  % The small penalization 1E-6*alpha_D*Test_alpha_D seems necessary to
  % have a convergence in all cases. Why ?
end

%
% Model solve
%

disp(sprintf('Solve problem with %d dofs', md.nbdof()));
md.solve('max_res', 1E-9, 'max_iter', 40, 'noisy'); % , 'lsearch', 'simplest',  'alpha min', 0.8)
if (~Dirichlet_version)
  disp(sprintf('alpha_D = %g', md.variable('alpha_D')));
end
% md.test_tangent_matrix(1e-4, 10, 0.001);
md.variable('lambda1')

%
% Solution draw
%  
U1 = md.variable('u1');
U2 = md.variable('u2');
VM1 = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u1', 'clambdastar', 'cmu', mfvm1);
VM2 = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u2', 'clambdastar', 'cmu', mfvm2);

figure(1);
gf_plot(mfvm1, VM1, 'deformed_mesh', 'on', 'deformation', U1, 'deformation_mf', mfu1, 'deformation_scale', 1, 'refine', 8);
hold on;
gf_plot(mfvm2, VM2, 'deformed_mesh', 'on', 'deformation', U2, 'deformation_mf', mfu2, 'deformation_scale', 1, 'refine', 8);
xlabel('x'); ylabel('y');
title('Deformed configuration');
hold off;