1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
% Copyright (C) 2015-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% Contact of a deformable 'wheel' onto a plane deformable obstacle.
%
view_mesh = true;
Dirichlet_version = false; % A Dirichlet condition instead of the applied load
%
% Physical parameters
%
E = 21E6; % Young Modulus (N/cm^2)
nu = 0.3; % Poisson ratio
clambda = E*nu/((1+nu)*(1-2*nu)); % First Lame coefficient (N/cm^2)
cmu = E/(2*(1+nu)); % Second Lame coefficient (N/cm^2)
clambdastar = 2*clambda*cmu/(clambda+2*cmu); % Lame coefficient for Plane stress (N/cm^2)
applied_force = 1E7; % Force at the hole boundary (N)
%
% Numerical parameters
%
h = 4; % Approximate mesh size
elements_degree = 2; % Degree of the finite element methods
gamma0 = 1./E; % Augmentation parameter for the augmented Lagrangian
%
% Mesh generation. Meshes can also been imported from several formats.
%
mo1 = gfMesherObject('ball', [0., 15.], 15.);
mo2 = gfMesherObject('ball', [0., 15.], 8.);
mo3 = gfMesherObject('set minus', mo1, mo2);
disp('Meshes generation');
gf_util('trace level', 1) % No trace for mesh generation nor for assembly
mesh1 = gfMesh('generate', mo3, h, 2);
mesh2 = gfMesh('import','structured', sprintf('GT="GT_PK(2,1)";SIZES=[30,10];NOISED=0;NSUBDIV=[%d,%d];', floor(30/h)+1, floor(10/h)+1));
mesh2.translate([-15.;-10.]);
if (view_mesh)
figure(2);
gf_plot_mesh(mesh1);
hold on;
gf_plot_mesh(mesh2);
hold off;
pause(1);
end
%
% Boundary selection
%
fb1 = mesh1.outer_faces_in_box([-8.1, 6.9], [8.1, 23.1]); % Boundary of the hole
fb2 = mesh1.outer_faces_with_direction([0., -1.], pi/4.5); % Contact boundary of the wheel
fb3 = mesh2.outer_faces_with_direction([0., -1.], 0.01); % Bottom boundary of the foundation
HOLE_BOUND=1; CONTACT_BOUND=2; BOTTOM_BOUND=3;
mesh1.set_region(HOLE_BOUND, fb1);
mesh1.set_region(CONTACT_BOUND, fb2);
mesh1.region_subtract(CONTACT_BOUND, HOLE_BOUND);
mesh2.set_region(BOTTOM_BOUND, fb3);
%
% Definition of finite elements methods and integration method
%
mfu1 = gfMeshFem(mesh1, 2);
mfu1.set_classical_fem(elements_degree);
mflambda = gfMeshFem(mesh1, 2);
mflambda.set_classical_fem(elements_degree-1);
mflambda_C = gfMeshFem(mesh1, 1);
mflambda_C.set_classical_fem(elements_degree-1);
mfu2 = gfMeshFem(mesh2, 2);
mfu2.set_classical_fem(elements_degree);
mfvm1 = gfMeshFem(mesh1, 1);
mfvm1.set_classical_discontinuous_fem(elements_degree);
mfvm2 = gfMeshFem(mesh2, 1);
mfvm2.set_classical_discontinuous_fem(elements_degree);
mim1 = gfMeshIm(mesh1, 6);
mim1c = gfMeshIm(mesh1, gfInteg('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(4),4)'));
mim2 = gfMeshIm(mesh2, 4);
%
% Model definition
%
md=gfModel('real');
md.add_fem_variable('u1', mfu1); % Displacement of the structure 1
md.add_fem_variable('u2', mfu2); % Displacement of the structure 2
md.add_initialized_data('cmu', [cmu]);
md.add_initialized_data('clambdastar', [clambdastar]);
md.add_isotropic_linearized_elasticity_brick(mim1, 'u1', 'clambdastar', 'cmu');
md.add_isotropic_linearized_elasticity_brick(mim2, 'u2', 'clambdastar', 'cmu');
md.add_Dirichlet_condition_with_multipliers(mim2, 'u2', elements_degree-1, BOTTOM_BOUND);
% Contact condition (augmented Lagrangian)
md.add_initialized_data('gamma0', [gamma0]);
md.add_interpolate_transformation_from_expression('Proj1', mesh1, mesh2, '[X(1);0]');
md.add_filtered_fem_variable('lambda1', mflambda_C, CONTACT_BOUND);
md.add_nonlinear_generic_assembly_brick(mim1c, 'lambda1*(Test_u1.[0;1])-lambda1*(Interpolate(Test_u2,Proj1).[0;1])', CONTACT_BOUND);
md.add_nonlinear_generic_assembly_brick(mim1c, '-(gamma0*element_size)*(lambda1 + neg_part(lambda1+(1/(gamma0*element_size))*((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).[0;1])))*Test_lambda1', CONTACT_BOUND);
% Prescribed force in the hole (or Dirichlet condition)
if (Dirichlet_version)
md.add_initialized_data('DData', [0., -1.0]);
md.add_Dirichlet_condition_with_multipliers(mim1, 'u1', elements_degree-1, HOLE_BOUND, 'DData');
else
md.add_filtered_fem_variable('lambda_D', mflambda, HOLE_BOUND);
md.add_initialized_data('F', [applied_force/(8.*2.*pi)]);
md.add_variable('alpha_D', 1);
md.add_linear_generic_assembly_brick(mim1, '-lambda_D.Test_u1 + (alpha_D*[0;1] - u1).Test_lambda_D + (lambda_D.[0;1] + F)*Test_alpha_D + 1E-6*alpha_D*Test_alpha_D', HOLE_BOUND);
% The small penalization 1E-6*alpha_D*Test_alpha_D seems necessary to
% have a convergence in all cases. Why ?
end
%
% Model solve
%
disp(sprintf('Solve problem with %d dofs', md.nbdof()));
md.solve('max_res', 1E-9, 'max_iter', 40, 'noisy'); % , 'lsearch', 'simplest', 'alpha min', 0.8)
if (~Dirichlet_version)
disp(sprintf('alpha_D = %g', md.variable('alpha_D')));
end
% md.test_tangent_matrix(1e-4, 10, 0.001);
md.variable('lambda1')
%
% Solution draw
%
U1 = md.variable('u1');
U2 = md.variable('u2');
VM1 = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u1', 'clambdastar', 'cmu', mfvm1);
VM2 = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u2', 'clambdastar', 'cmu', mfvm2);
figure(1);
gf_plot(mfvm1, VM1, 'deformed_mesh', 'on', 'deformation', U1, 'deformation_mf', mfu1, 'deformation_scale', 1, 'refine', 8);
hold on;
gf_plot(mfvm2, VM2, 'deformed_mesh', 'on', 'deformation', U2, 'deformation_mf', mfu2, 'deformation_scale', 1, 'refine', 8);
xlabel('x'); ylabel('y');
title('Deformed configuration');
hold off;
|