1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
% Copyright (C) 2005-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
if (1) % draw the shape functions
gf_workspace('clear all');
m = gf_mesh('triangles grid',[0:0.5:1],[0:0.5:1]);
mf = gfMeshFem(m,1);
gf_mesh_fem_set(mf,'fem',gf_fem('FEM_REDUCED_HCT_TRIANGLE'));
nbdof=gf_mesh_fem_get(mf, 'nbdof');
U = zeros(1, nbdof);
for i=13:nbdof
U(i) = 0.5;
gf_plot(mf,U,'mesh','on','refine',10, 'zplot', 'on'); colorbar;
title('shape function');
pause;
gf_plot(mf,U,'mesh','on','refine',10); colorbar;
title('shape function');
U(i) = 0.0;
end;
return;
end;
% trace on;
gf_workspace('clear all');
NX=10
m = gf_mesh('triangles grid',[0:1/NX:1],[0:1/NX:1]);
%gf_mesh_set(m,'transform', [.3 .8; .8 -.2]);
%m=gfMesh('pt2d', [0 0; 1 0; 0 1]', [1 2 3]');
% create a mesh_fem of for a field of dimension 1 (i.e. a scalar field)
mf = gfMeshFem(m,1);
mfl = gfMeshFem(m,1);
mflg = gfMeshFem(m,1);
mflh = gfMeshFem(m,1);
% assign the Q2 fem to all convexes of the mesh_fem,
%gf_mesh_fem_set(mf,'fem',gf_fem('FEM_PK(2,3)'));
%gf_mesh_fem_set(mf,'fem',gf_fem('FEM_ARGYRIS'));
gf_mesh_fem_set(mf,'fem',gf_fem('FEM_HCT_TRIANGLE'));
%gf_mesh_fem_set(mf,'fem',gf_fem('FEM_HERMITE(2)'));
gf_mesh_fem_set(mfl,'fem',gf_fem('FEM_PK(2,5)'));
gf_mesh_fem_set(mflg,'fem',gf_fem('FEM_PK_DISCONTINUOUS(2,4)'));
gf_mesh_fem_set(mflh,'fem',gf_fem('FEM_PK_DISCONTINUOUS(2,3)'));
% an exact integration will be used
%mim = gf_mesh_im(m, gf_integ('IM_TRIANGLE(13)'));
mim = gf_mesh_im(m, gf_integ('IM_HCT_COMPOSITE(IM_TRIANGLE(13))'));
% detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
gf_mesh_set(m, 'boundary', 1, border);
gf_plot_mesh(m, 'regions', [1]); % the boundary edges appears in red
pause(1);
% exact solution
expr_u = 'y.^5';
Uexact = gf_mesh_fem_get(mfl,'eval', { expr_u }); % interpolate the
M=gf_asm('mass matrix', mim, mf, mf);
F=gf_asm('volumic source', mim, mf, mfl, Uexact);
U=(M\F)';
Ul = gf_compute(mf,U,'interpolate on', mfl);
DUl = gf_compute(mfl, Ul, 'gradient',mflg);
D2Ul = gf_compute(mflg, DUl, 'gradient',mflh);
D2Ul2 = gf_compute(mfl,Ul, 'hessian',mflh);
nref=4
subplot(2,2,1); gf_plot(mfl,Ul,'mesh','on','refine',nref,'contour',.01:.01:.1); colorbar;title('computed solution');
subplot(2,2,2); gf_plot(mfl,Ul-Uexact,'mesh','on','refine',nref); colorbar;title('difference with exact solution');
subplot(2,2,3); gf_plot(mflg,DUl(1,:),'mesh','on', 'refine', nref); colorbar;title('gradx');
subplot(2,2,4); gf_plot(mflg,DUl(2,:),'mesh','on', 'refine', nref); colorbar;title('grady');
disp(sprintf('H1 norm of error: %g', gf_compute(mfl,Ul-Uexact,'H1 norm',mim)));
|