1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python GetFEM++ interface
#
# Copyright (C) 2009-2015 Luis Saavedra, Yves Renard.
#
# This file is a part of GetFEM++
#
# GetFEM++ is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation; either version 2.1 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
#
############################################################################
""" Linear Elastostatic problem with a crack.
This program is used to check that python-getfem is working. This is
also a good example of use of GetFEM++.
$Id: demo_crack.py 5102 2015-10-18 18:20:28Z logari81 $
"""
try:
import getfem as gf
except ImportError:
import sys
sys.path.append('../../src/python/')
import getfem as gf
else:
print "module getfem not found!"
import numpy as np
import math
variant = 4
# variant : 1 : a single crack with cutoff enrichement
# 2 : a single crack with a fixed size area Xfem enrichment
# 3 : a supplementary crossing crack with a fixed size area
# Xfem enrichment
# 4 : variant 3 with the second crack closed by a penalisation of
# the jump (example of use of xfem_plus and xfem_minus).
# 5 : variant 3 with the first crack closed by a penalisation of
# the jump (example of use of xfem_plus and xfem_minus).
# 6 : variant 3 with the two cracks closed by a penalisation of
# the jump (example of use of xfem_plus and xfem_minus).
# Parameters: ######################
nx = 20 #
#
DIRICHLET = 101 #
#
Lambda = 1.25E10 # Lame coefficient #
Mu = 1.875E10 # Lame coefficient #
#####################################
# Mesh definition:
m = gf.Mesh('regular_simplices', -0.5+np.arange(nx+1)/float(nx),
-0.5+np.arange(nx+1)/float(nx))
#m = gf.Mesh('import','gmsh','quad.msh')
# Boundary set:
m.set_region(DIRICHLET, m.outer_faces())
# Global functions for asymptotic enrichment:
ck0 = gf.GlobalFunction('crack',0)
ck1 = gf.GlobalFunction('crack',1)
ck2 = gf.GlobalFunction('crack',2)
ck3 = gf.GlobalFunction('crack',3)
if variant == 1: # Cutoff enrichement
coff = gf.GlobalFunction('cutoff',2,0.4,0.01,0.4)
ckoff0 = ck0*coff # gf.GlobalFunction('product',ck0,coff)
ckoff1 = ck1*coff
ckoff2 = ck2*coff
ckoff3 = ck3*coff
# Levelset definition:
ls = gf.LevelSet(m,1,'y','x')
mls = gf.MeshLevelSet(m)
mls.add(ls)
if variant > 2:
ls2 = gf.LevelSet(m,1,'x+0.125','abs(y)-0.375')
mls.add(ls2);
mls.adapt()
# Basic mesh_fem without enrichment:
mf_pre_u = gf.MeshFem(m)
mf_pre_u.set_fem(gf.Fem('FEM_PK(2,1)'))
# Definition of the enriched finite element method (MeshFemLevelSet):
mfls_u = gf.MeshFem('levelset',mls,mf_pre_u)
if variant == 1: # Cutoff enrichement
# MeshFemGlobalFunction:
mf_sing_u = gf.MeshFem('global function',m,ls,[ckoff0,ckoff1,ckoff2,ckoff3],1)
# MeshFemDirectSum:
mf_u = gf.MeshFem('sum',mf_sing_u,mfls_u)
else:
mf_sing_u = gf.MeshFem('global function',m,ls,[ck0,ck1,ck2,ck3],1)
mf_part_unity = gf.MeshFem(m)
mf_part_unity.set_classical_fem(1)
DOFpts = mf_part_unity.basic_dof_nodes()
# Search the dofs to be enriched with the asymptotic displacement.
Idofs_center = np.nonzero(np.square(DOFpts[0,:]) +
np.square(DOFpts[1,:]) <= 0.1**2)[0]
mf_xfem_sing = gf.MeshFem('product', mf_part_unity, mf_sing_u)
mf_xfem_sing.set_enriched_dofs(Idofs_center)
if variant > 2:
Idofs_up = np.nonzero(np.square(DOFpts[0,:]+0.125) +
np.square(DOFpts[1,:]-0.375) <= 0.1**2)[0]
Idofs_down = np.nonzero(np.square(DOFpts[0,:]+0.125) +
np.square(DOFpts[1,:]+0.375) <= 0.1**2)[0]
mf_sing_u2 = gf.MeshFem('global function',m,ls2,[ck0,ck1,ck2,ck3],1)
mf_xfem_sing2 = gf.MeshFem('product', mf_part_unity, mf_sing_u2)
mf_xfem_sing2.set_enriched_dofs(np.union1d(Idofs_up, Idofs_down))
if variant == 2:
mf_u = gf.MeshFem('sum', mf_xfem_sing, mfls_u)
else:
mf_u = gf.MeshFem('sum', mf_xfem_sing, mf_xfem_sing2, mfls_u)
mf_u.set_qdim(2)
# MeshIm definition (MeshImLevelSet):
mim = gf.MeshIm('levelset', mls, 'all',
gf.Integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'),
gf.Integ('IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2,6),9)'),
gf.Integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),5)'))
# Exact solution for a single crack:
mf_ue = gf.MeshFem('global function',m,ls,[ck0,ck1,ck2,ck3])
A = 2+2*Mu/(Lambda+2*Mu); B=-2*(Lambda+Mu)/(Lambda+2*Mu)
Ue = np.zeros([2,4])
Ue[0,0] = 0; Ue[1,0] = A-B # sin(theta/2)
Ue[0,1] = A+B; Ue[1,1] = 0 # cos(theta/2)
Ue[0,2] = -B; Ue[1,2] = 0 # sin(theta/2)*sin(theta)
Ue[0,3] = 0; Ue[1,3] = B # cos(theta/2)*cos(theta)
Ue /= 2*np.pi
Ue = Ue.T.reshape(1,8)
# Model definition:
md = gf.Model('real')
md.add_fem_variable('u', mf_u)
# data
md.add_initialized_data('lambda', [Lambda])
md.add_initialized_data('mu', [Mu])
md.add_isotropic_linearized_elasticity_brick(mim,'u','lambda','mu')
md.add_initialized_fem_data("DirichletData", mf_ue, Ue)
md.add_Dirichlet_condition_with_penalization(mim,'u', 1e12, DIRICHLET, 'DirichletData')
if variant == 5 or variant == 6: # Penalisation of the jump over the first crack
mim_bound1 = gf.MeshIm('levelset', mls, 'boundary(a)',
gf.Integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'))
#gf.asm_generic(mim_bound1, 0, '1', -1) # length of the crack
md.add_linear_generic_assembly_brick\
(mim_bound1, '1e17*(Xfem_plus(u)-Xfem_minus(u)).(Xfem_plus(Test_u)-Xfem_minus(Test_u))')
if variant == 4 or variant == 6: # Penalisation of the jump over the second crack
mim_bound2 = gf.MeshIm('levelset', mls, 'boundary(b)',
gf.Integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'))
md.add_linear_generic_assembly_brick\
(mim_bound2, '1e17*(Xfem_plus(u)-Xfem_minus(u)).(Xfem_plus(Test_u)-Xfem_minus(Test_u))')
# Assembly of the linear system and solve:
md.solve()
U = md.variable('u')
# Interpolation of the solution on a cut mesh for the drawing purpose
cut_mesh = mls.cut_mesh()
mfv = gf.MeshFem(cut_mesh, 2)
mfv.set_classical_discontinuous_fem(2, 0.001)
mf_ue.set_qdim(2)
V = gf.compute_interpolate_on(mf_u, U, mfv)
Ve = gf.compute_interpolate_on(mf_ue, Ue, mfv)
# Computation of the Von Mises stress
mfvm = gf.MeshFem(cut_mesh)
mfvm.set_classical_discontinuous_fem(2, 0.001)
md.add_initialized_fem_data('u_cut', mfv, V)
VM = md.compute_isotropic_linearized_Von_Mises_or_Tresca('u_cut', 'lambda', 'mu', mfvm)
mfv.export_to_pos('crack.pos', V, 'V', Ve, 'Ve', mfvm, VM, 'Von Mises')
print 'You can view the solution with (for example):'
print 'gmsh crack.pos'
|