1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python GetFEM++ interface
#
# Copyright (C) 2012-2016 Yves Renard.
#
# This file is a part of GetFEM++
#
# GetFEM++ is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version along with the GCC Runtime Library
# Exception either version 3.1 or (at your optifn) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License and GCC Runtime Library Exception for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
#
############################################################################
import getfem as gf
import numpy as np
from numpy import linalg as npla
gf.util_trace_level(1)
dirichlet_version = 2 # 1 = simplification, 2 = penalisation
test_tangent_matrix = False # Test or not tangent system validity
incompressible = False; # Incompressibility option
explicit_potential = True; # Elasticity law with explicit potential
# lawname = 'Ciarlet Geymonat'
# params = [1.,1.,0.25]
lawname = 'SaintVenant Kirchhoff'
params = [1.,1.]
if (incompressible):
lawname = 'Incompressible Mooney Rivlin'
params = [1.,1.]
N1 = 2; N2 = 4; h = 20.; DX = 1./N1; DY = (1.*h)/N2;
m = gf.Mesh('cartesian', np.arange(-0.5, 0.5+DX,DX), np.arange(0., h+DY,DY),
np.arange(-1.5, 1.5+3*DX,3*DX))
mfu = gf.MeshFem(m, 3) # mesh-fem supporting a 3D-vector field
mfdu = gf.MeshFem(m,1)
# The mesh_im stores the integration methods for each tetrahedron
mim = gf.MeshIm(m, gf.Integ('IM_GAUSS_PARALLELEPIPED(3,4)'))
# We choose a P2 fem for the main unknown
mfu.set_fem(gf.Fem('FEM_QK(3,2)'))
if (dirichlet_version == 1):
mfd = mfu;
else:
mfd = gf.MeshFem(m,1)
mfd.set_fem(gf.Fem('FEM_QK(3,1)'))
# The P2 fem is not derivable across elements, hence we use a discontinuous
# fem for the derivative of U.
mfdu.set_fem(gf.Fem('FEM_QK_DISCONTINUOUS(3,2)'));
# Display some information about the mesh
print('nbcvs=%d, nbpts=%d, nbdof=%d' % (m.nbcvs(), m.nbpts(), mfu.nbdof()))
# Assign boundary numbers
ftop = m.outer_faces_with_direction([0., 1., 0.], 0.5)
fbot = m.outer_faces_with_direction([0., -1., 0.], 0.5)
m.set_region(1, ftop);
m.set_region(2, fbot);
m.set_region(3, np.append(ftop,fbot,axis=1));
# Model definition
md=gf.Model('real')
md.add_fem_variable('u', mfu)
md.add_initialized_data('params', params)
if (not(explicit_potential)):
md.add_finite_strain_elasticity_brick(mim, lawname, 'u', 'params')
else:
print "Explicit elastic potential"
K = 1.2; mu = 3.0;
_F_ = "(Id(3)+Grad_u)"
_J_= "Det{F}".format(F=_F_)
_be_ = "(Left_Cauchy_Green{F})".format(F=_F_)
_expr_1 = "{K_over_2}*sqr(log({J}))+{mu_over_2}*(Matrix_j1{be}-3)"\
.format(K_over_2=K/2., J=_J_, mu_over_2=mu/2., be=_be_)
_expr_2 = "{K_over_2}*sqr(log({J}))+{mu_over_2}*(pow(Det{be},-1./3.)*Trace{be}-3)"\
.format(K_over_2=K/2., J=_J_, mu_over_2=mu/2., be=_be_)
md.add_nonlinear_generic_assembly_brick(mim, _expr_2);
# md.add_nonlinear_generic_assembly_brick(mim, 'sqr(Trace(Green_Lagrangian(Id(meshdim)+Grad_u)))/8 + Norm_sqr(Green_Lagrangian(Id(meshdim)+Grad_u))/4')
# md.add_nonlinear_generic_assembly_brick(mim, '((Id(meshdim)+Grad_u)*(params(1)*Trace(Green_Lagrangian(Id(meshdim)+Grad_u))*Id(meshdim)+2*params(2)*Green_Lagrangian(Id(meshdim)+Grad_u))):Grad_Test_u')
# md.add_nonlinear_generic_assembly_brick(mim, 'Saint_Venant_Kirchhoff_potential(Grad_u,params)')
if (incompressible):
mfp = gf.MeshFem(m,1)
mfp.set_classical_discontinuous_fem(1)
md.add_fem_variable('p', mfp)
md.add_finite_strain_incompressibility_brick(mim, 'u', 'p')
# md.add_nonlinear_generic_assembly brick(mim, 'p*(1-Det(Id(meshdim)+Grad_u))')
# md.add_nonlinear_generic_assembly_brick(mim, '-p*Det(Id(meshdim)+Grad_u)*(Inv(Id(meshdim)+Grad_u))'':Grad_Test_u + Test_p*(1-Det(Id(meshdim)+Grad_u))')
if (dirichlet_version == 1):
md.add_fem_data('DirichletData', mfu)
md.add_Dirichlet_condition_with_simplification('u', 3, 'DirichletData')
else:
md.add_fem_data('DirichletData', mfd, 3)
md.add_Dirichlet_condition_with_penalization(mim, 'u', 1e4, 3, 'DirichletData')
VM=np.zeros(mfdu.nbdof());
UU=np.zeros(0);
VVM=np.zeros(0);
nbstep=40;
P = mfd.basic_dof_nodes()
r = np.sqrt(np.square(P[0 ,:]) + np.square(P[2, :]))
theta = np.arctan2(P[2,:], P[0,:]);
def axrot_matrix(A, B, theta):
n=(np.array(B)-np.array(A)); n = n/npla.norm(n)
a=n[0]; b=n[1]; c=n[2]
d=np.sqrt(b*b+c*c)
T=np.eye(4); T[0:3,3]=-np.array(A)
Rx=np.eye(4)
if (npla.norm(n[1:3])>1e-6):
Rx[1:3,1:3]=np.array([[c/d,-b/d],[b/d,c/d]])
Ry=np.eye(4); Ry[[[0],[2]],[0,2]]=[[d,-a],[a,d]]
Rz=np.eye(4)
Rz[0:2,0:2]=np.array([[np.cos(theta),np.sin(theta)],
[-np.sin(theta),np.cos(theta)]])
R = np.dot(np.dot(np.dot(npla.inv(T),npla.inv(Rx)),
np.dot(npla.inv(Ry),Rz)),np.dot(np.dot(Ry,Rx),T))
return R;
for step in range(1,nbstep+1):
w = (3.*step)/nbstep
# Computation of the rotation for Dirichlet's condition
dtheta = np.pi
dtheta2 = np.pi/2.
if (dirichlet_version == 1):
R=np.zeros(mfd.nbdof())
else:
R=np.zeros((3, mfd.nbdof()))
i_top = mfd.basic_dof_on_region(1)
i_bot = mfd.basic_dof_on_region(2)
dd = np.amax(P[1,i_top]*np.sin(w*dtheta))
if (w < 1):
RT1 = axrot_matrix([0, h*.75, 0], [0, h*.75, 1], w*dtheta)
RT2 = axrot_matrix([0, 0, 0], [0, 1, 0], np.sqrt(w)*dtheta2)
RB1 = axrot_matrix([0, h*.25, 0], [0, h*.25, 1], -w*dtheta)
RB2 = RT2.transpose()
elif (w < 2):
RT1 = axrot_matrix([0, h*.75, 0], [0, h*.75, 1], (2-w)*dtheta);
RT2 = axrot_matrix([0, 0, 0], [0, 1, 0], w*dtheta2);
RB1 = axrot_matrix([0, h*.25, 0], [0, h*.25, 1], -(2-w)*dtheta);
RB2 = RT2.transpose()
else:
RT1 = axrot_matrix([0, h*.75, 0], [0, h*.75, 1], 0);
RT2 = axrot_matrix([0, 0, 0], [0, 1, 0], (3-w)*2*dtheta2);
RB1 = axrot_matrix([0, h*.25, 0], [0, h*.25, 1], 0);
RB2 = RT2.transpose()
if (dirichlet_version == 1):
for i in i_top:
ro = np.dot(RT1, np.dot(RT2,np.append(P[:,i],[1])))
R[i] = ro[mod(i,3)] - P[mod(i,3),i]
for i in i_bot:
ro = np.dot(RB1,np.dot(RB2,np.append(P[:,i],[1])))
R[i] = ro[mod(i,3)] - P[mod(i,3),i]
else:
for i in i_top:
ro = np.dot(RT1,np.dot(RT2,np.append(P[:,i],[1])))
R[:, i] = ro[0:3] - P[:,i]
for i in i_bot:
ro = np.dot(RB1,np.dot(RB2,np.append(P[:,i],[1])))
R[:, i] = ro[0:3] - P[:,i]
md.set_variable('DirichletData', R)
# Nonlinear solve
md.solve('very noisy', 'max_iter', 50, 'max_res', 1e-7, 'lsearch',
'simplest')
print("Iteration %d done" % step)
if (test_tangent_matrix):
md.test_tangent_matrix(1E-8, 10, 0.0001)
U = md.variable('u')
VM0 = md.compute_Von_Mises_or_Tresca('u', lawname, 'params', mfdu)
# Direct interpolation of the Von Mises stress
# VM = md.interpolation('(sqrt(3/2)/Det(Id(meshdim)+Grad_u))*Norm((Id(meshdim)+Grad_u)*Saint_Venant_Kirchhoff_sigma(Grad_u,params)*(Id(meshdim)+Grad_u'') - Id(meshdim)*Trace((Id(meshdim)+Grad_u)*Saint_Venant_Kirchhoff_sigma(Grad_u,params)*(Id(meshdim)+Grad_u''))/meshdim)', mfdu);
VM = md.compute_finite_strain_elasticity_Von_Mises(lawname, 'u', 'params', mfdu)
print(npla.norm(VM-VM0))
sl=gf.Slice(('boundary',), mfu, 4)
sl.export_to_vtk('demo_nonlinear_elasticity_iter_%d.vtk' % step, 'ascii',
mfdu, VM, 'Von Mises Stress', mfu, U, 'Displacement')
print('You can vizualize the loading steps by launching for instance')
print('mayavi2 -d demo_nonlinear_elasticity_iter_1.vtk -f WarpVector -m Surface')
|