1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
/*===========================================================================
Copyright (C) 2002-2017 Vanessa Lleras, Yves Renard.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
* Linear Elastostatic problem with a crack.
*
*/
#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_export.h" /* export functions (save solution in a file) */
#include "getfem/getfem_derivatives.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_mesh_im_level_set.h"
#include "getfem/getfem_mesh_fem_level_set.h"
#include "getfem/getfem_mesh_fem_product.h"
#include "getfem/getfem_mesh_fem_global_function.h"
#include "getfem/getfem_mesh_fem_sum.h"
#include "gmm/gmm.h"
#include "getfem/getfem_error_estimate.h"
#include "getfem/getfem_interpolated_fem.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
template <typename T> std::ostream &operator <<
(std::ostream &o, const std::vector<T>& m) { gmm::write(o,m); return o; }
/* some GetFEM++ types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::short_type;
using bgeot::dim_type;
using bgeot::base_matrix; /* small dense matrix. */
/* definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++
*/
typedef getfem::modeling_standard_sparse_vector sparse_vector;
typedef getfem::modeling_standard_sparse_matrix sparse_matrix;
typedef getfem::modeling_standard_plain_vector plain_vector;
base_small_vector sol_f(const base_node &x) {
// int N = x.size();
// base_small_vector res(N); res[N-1] = x[N-1];
return base_small_vector(x.size());
}
base_small_vector sol_F(const base_node &x) {
int N = x.size();
base_small_vector res(N);
res[1] = -1.0;
return res;
}
scalar_type young_modulus(scalar_type lambda, scalar_type mu) {
return 4*mu*(lambda + mu)/(lambda+2*mu);
}
struct exact_solution {
getfem::mesh_fem_global_function mf;
getfem::base_vector U;
exact_solution(getfem::mesh &me) : mf(me) {}
void init(int mode, scalar_type lambda, scalar_type mu,
getfem::level_set &ls) {
std::vector<getfem::pglobal_function> cfun(4);
for (unsigned j=0; j < 4; ++j) {
getfem::pxy_function s
= std::make_shared<getfem::crack_singular_xy_function>(j);
cfun[j] = getfem::global_function_on_level_set(ls, s);
}
mf.set_functions(cfun);
mf.set_qdim(1);
U.resize(8); assert(mf.nb_dof() == 4);
getfem::base_vector::iterator it = U.begin();
scalar_type coeff=0.;
switch(mode) {
case 1: {
scalar_type A=2+2*mu/(lambda+2*mu), B=-2*(lambda+mu)/(lambda+2*mu);
/* "colonne" 1: ux, colonne 2: uy */
*it++ = 0; *it++ = A-B; /* sin(theta/2) */
*it++ = A+B; *it++ = 0; /* cos(theta/2) */
*it++ = -B; *it++ = 0; /* sin(theta/2)*sin(theta) */
*it++ = 0; *it++ = B; /* cos(theta/2)*sin(theta) */
coeff = 1./(sqrt(2*M_PI)); // * young_modulus(lambda,mu));
} break;
case 2: {
scalar_type C1 = (lambda+3*mu)/(lambda+mu);
*it++ = C1+2-1; *it++ = 0;
*it++ = 0; *it++ = -(C1-2+1);
*it++ = 0; *it++ = 1;
*it++ = 1; *it++ = 0;
coeff = 2.*(mu+lambda)/(lambda+2*mu)/(sqrt(2*M_PI)); // * young_modulus(lambda,mu));
} break;
default:
assert(0);
break;
}
gmm::scale(U, coeff);
}
};
/**************************************************************************/
/* Structure for the crack problem. */
/**************************************************************************/
struct crack_problem {
enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM1 = 1,
NEUMANN_BOUNDARY_NUM2 = 3};
getfem::mesh mesh; /* the mesh */
getfem::mesh_level_set mls; /* the integration methods. */
getfem::mesh_im_level_set mim; /* the integration methods. */
getfem::mesh_im_level_set mimbound; /* integration methods on the crack. */
getfem::mesh_fem mf_pre_u;
getfem::mesh_fem mf_mult;
getfem::mesh_fem_global_function mf_sing_u;
getfem::mesh_fem_level_set mfls_u;
getfem::mesh_fem_sum mf_u_sum;
exact_solution exact_sol;
getfem::mesh_fem& mf_u() { return mf_u_sum; }
scalar_type lambda, mu; /* Lame coefficients. */
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
double lx,ly; /* size of the mesh */
double F11,F12,F21,F22,F31,F32,F41,F42; /* NEUMANN forces */
getfem::level_set ls; /* The two level sets defining the crack. */
scalar_type residual; /* max residual for the iterative solvers */
size_type conv_max;
unsigned dir_with_mult, option;
std::string datafilename;
bgeot::md_param PARAM;
struct cutoff_param {
scalar_type radius, radius1, radius0;
size_type fun_num;
};
cutoff_param cutoff;
bool adapted_refine;
bool solve(plain_vector &U);
void error_estimate(const plain_vector &U, plain_vector &ERR);
void init(void);
crack_problem(void) : mls(mesh), mim(mls),
mimbound(mls, getfem::mesh_im_level_set::INTEGRATE_BOUNDARY),
mf_pre_u(mesh), mf_mult(mesh), mf_sing_u(mesh),
mfls_u(mls, mf_pre_u),
mf_u_sum(mesh), exact_sol(mesh),
mf_rhs(mesh), ls(mesh, 1, true) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void crack_problem::init(void) {
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE = PARAM.string_value("FEM_TYPE","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
std::string SIMPLEX_INTEGRATION = PARAM.string_value("SIMPLEX_INTEGRATION",
"Name of simplex integration method");
std::string SINGULAR_INTEGRATION = PARAM.string_value("SINGULAR_INTEGRATION");
option = unsigned(PARAM.int_value("OPTION", "option"));
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE=" << FEM_TYPE << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
/* First step : build the mesh */
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
size_type N = pgt->dim();
std::vector<size_type> nsubdiv(N);
size_type NX = PARAM.int_value("NX", "Number of space steps ");
if (option == 1) NX *= 2;
std::fill(nsubdiv.begin(),nsubdiv.end(), NX);
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
if (option == 1)
for (dal::bv_visitor i(mesh.convex_index()); !i.finished(); ++i) {
base_node pt = gmm::mean_value(mesh.points_of_convex(i)) ;
bool kill = true;
for (size_type j = 0; j < N; ++j)
if (pt[j] < 0.5) kill = false;
if (kill) mesh.sup_convex(i, true);
}
lx = PARAM.real_value("LX", "length x'ox");
ly = PARAM.real_value("LY", "length y'oy");
bgeot::base_matrix M(2,2);
M(0,0) = lx;
M(1,1) = ly;
mesh.transformation(M);
// base_small_vector tt(N); tt[0] = tt[1] = -(lx/2.);
// mesh.translation(tt);
conv_max = PARAM.int_value("CONV_MAX","Maximal number of convexes in the mesh");
adapted_refine = PARAM.int_value("ADAPTED_REFINE", "Adapted Refinement");
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
residual = PARAM.real_value("RESIDUAL");
if (residual == 0.) residual = 1e-10;
mu = PARAM.real_value("MU", "Lame coefficient mu");
lambda = PARAM.real_value("LAMBDA", "Lame coefficient lambda");
//unsigned mode =unsigned( PARAM.int_value("MODE", "mode"));
mf_u().set_qdim(dim_type(N));
/* set the finite element on the mf_u */
getfem::pfem pf_u = getfem::fem_descriptor(FEM_TYPE);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
getfem::pintegration_method simp_ppi =
getfem::int_method_descriptor(SIMPLEX_INTEGRATION);
getfem::pintegration_method sing_ppi = (SINGULAR_INTEGRATION.size() ? getfem::int_method_descriptor(SINGULAR_INTEGRATION) : 0);
mim.set_integration_method(mesh.convex_index(), ppi);
mimbound.set_integration_method(mesh.convex_index(), ppi);
mls.add_level_set(ls);
mim.set_simplex_im(simp_ppi, sing_ppi);
mimbound.set_simplex_im(simp_ppi, sing_ppi);
mf_pre_u.set_finite_element(mesh.convex_index(), pf_u);
mf_mult.set_finite_element(mesh.convex_index(), pf_u);
mf_mult.set_qdim(dim_type(N));
dir_with_mult = unsigned(PARAM.int_value("DIRICHLET_VERSION"));
cutoff.fun_num = PARAM.int_value("CUTOFF_FUNC", "cutoff function");
cutoff.radius = PARAM.real_value("CUTOFF", "Cutoff");
cutoff.radius1 = PARAM.real_value("CUTOFF1", "Cutoff1");
cutoff.radius0 = PARAM.real_value("CUTOFF0", "Cutoff0");
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
switch (option) {
case 0 :
mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
break;
case 1 :
if (gmm::abs(un[N-1]-1.0) < 1.0E-7) {
base_node pt = gmm::mean_value(mesh.points_of_face_of_convex(i.cv(), i.f()));
if (pt[N-1] > 0.9) mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
}
else if (gmm::abs(un[N-1]+1.0) < 1.0E-7)
mesh.region(NEUMANN_BOUNDARY_NUM1).add(i.cv(), i.f());
else
mesh.region(NEUMANN_BOUNDARY_NUM2).add(i.cv(), i.f());
break;
}
}
// exact_sol.init(1,lambda,mu,ls);
}
base_small_vector ls_function(const base_node P, int option) {
scalar_type x = P[0], y = P[1];
base_small_vector res(2);
switch (option) {
case 0:
res[0] = y-0.5;
res[1] = x-0.5;
break;
case 1:
// res[0] = 2.2* x - y - 0.6;
// res[1] = 1.0 - (x + 2.2*y);
res[0] = (2.* x - y - 0.5) / sqrt(5); // crack tip on (0.375, 0.25).
res[1] = (7./8. - (x + 2.*y)) / sqrt(5);
break;
default: assert(0);
}
return res;
}
void crack_problem::error_estimate(const plain_vector &U, plain_vector &ERR) {
size_type N = mesh.dim();
size_type qdim = mf_u().get_qdim();
gmm::clear(ERR);
std::vector<scalar_type> coeff1, coeff2;
base_matrix grad1(qdim, N), grad2(qdim, N), E(N, N), S1(N, N), S2(N, N);
base_matrix hess1(qdim, N*N);
base_matrix G1, G2;
bgeot::geotrans_inv_convex gic;
base_node xref2(N);
base_small_vector up(N), jump(N);
GMM_ASSERT1(!mf_u().is_reduced(), "To be adapted");
for (dal::bv_visitor cv(mesh.convex_index()); !cv.finished(); ++cv) {
getfem::pmesher_signed_distance mmls = ls.mls_of_convex(cv, 0);
bgeot::pgeometric_trans pgt1 = mesh.trans_of_convex(cv);
getfem::papprox_integration pai1 =
get_approx_im_or_fail(mim.int_method_of_element(cv));
getfem::pfem pf1 = mf_u().fem_of_element(cv);
scalar_type radius = mesh.convex_radius_estimate(cv);
bgeot::vectors_to_base_matrix(G1, mesh.points_of_convex(cv));
coeff1.resize(mf_u().nb_basic_dof_of_element(cv));
gmm::copy(gmm::sub_vector(U, gmm::sub_index(mf_u().ind_basic_dof_of_element(cv))), coeff1);
getfem::fem_interpolation_context ctx1(pgt1, pf1, base_node(N), G1, cv);
// Residual on the element
for (unsigned ii=0; ii < pai1->nb_points_on_convex(); ++ii) {
base_small_vector res = sol_f(pai1->point(ii));
ctx1.set_xref(pai1->point(ii));
pf1->interpolation_hess(ctx1, coeff1, hess1, dim_type(qdim));
for (size_type i = 0; i < N; ++i)
for (size_type j = 0; j < N; ++j)
res[i] += (lambda + mu) * hess1(j, i*N+j) + mu * hess1(i, j*N+j);
// cout << "adding " << radius*radius*ctx1.J()*pai1->coeff(ii)*gmm::vect_norm2(res) << endl;
ERR[cv] += radius*radius*ctx1.J()*pai1->coeff(ii)*gmm::vect_norm2(res);
}
// scalar_type ee = ERR[cv];
if (ERR[cv] > 100)
cout << "Erreur en rsidu sur element " << cv << " : " << ERR[cv] << endl;
// Stress on the level set.
getfem::pintegration_method pim = mimbound.int_method_of_element(cv);
if (pim->type() == getfem::IM_APPROX) {
getfem::papprox_integration pai_crack = pim->approx_method();
base_small_vector gradls;
for (unsigned ii=0; ii < pai_crack->nb_points(); ++ii) {
ctx1.set_xref(pai_crack->point(ii));
mmls->grad(pai_crack->point(ii), gradls);
gradls /= gmm::vect_norm2(gradls);
gmm::mult(ctx1.B(), gradls, up);
scalar_type norm = gmm::vect_norm2(up);
up /= norm;
scalar_type coefficient = pai_crack->coeff(ii)*ctx1.J();
for (scalar_type e = -1.0; e < 2.0; e += 2.0) {
base_node ptref = pai_crack->point(ii) + e * 1.0E-7 * gradls;
if (pgt1->convex_ref()->is_in(ptref) > 0.) continue;
ctx1.set_xref(ptref);
pf1->interpolation_grad(ctx1, coeff1, grad1, dim_type(qdim));
// cout << "coeff1 = " << coeff1 << endl;
// cout << "grad1 = " << grad1 << endl;
gmm::copy(grad1, E); gmm::add(gmm::transposed(grad1), E);
gmm::scale(E, 0.5);
// cout << "E = " << grad1 << endl;
scalar_type trace = gmm::mat_trace(E);
gmm::copy(gmm::identity_matrix(), S1);
gmm::scale(S1, lambda * trace);
gmm::add(gmm::scaled(E, 2*mu), S1);
// cout << "S1 = " << S1 << endl;
// cout << "up = " << up << endl;
gmm::mult(S1, up, jump);
// cout << "jump = " << jump << endl;
ERR[cv] += radius * coefficient * gmm::vect_norm2_sqr(jump);
// if (gmm::vect_norm2(jump) > 100000) {
// cout.precision(14);
// cout << "gmm::vect_norm2_sqr(jump) = "
// << gmm::vect_norm2_sqr(jump) << " on cv " << cv
// << " pt " << ctx1.xreal() << endl; getchar();
// cout << "S1 = " << S1 << "up = " << up << endl;
// cout << "jump = " << jump << endl;
// cout << "point = " << ctx1.xreal() << endl;
// }
}
}
}
// if (ERR[cv]-ee > 100){
// cout << "Erreur en contrainte sur la level set sur element " << cv << " : " << ERR[cv]-ee << " radius = " << radius << endl;
// }
// ee = ERR[cv];
// jump of the stress between the element ant its neighbours.
for (short_type f1=0; f1 < mesh.structure_of_convex(cv)->nb_faces(); ++f1) {
if (gmm::abs((*mmls)(mesh.trans_of_convex(cv)->convex_ref()->points_of_face(f1)[0])) < 1E-7 * radius) continue;
size_type cvn = mesh.neighbour_of_convex(cv, f1);
if (cvn == size_type(-1)) continue;
bgeot::pgeometric_trans pgt2 = mesh.trans_of_convex(cvn);
getfem::pfem pf2 = mf_u().fem_of_element(cvn);
bgeot::vectors_to_base_matrix(G2, mesh.points_of_convex(cvn));
coeff2.resize(mf_u().nb_basic_dof_of_element(cvn));
gmm::copy(gmm::sub_vector(U, gmm::sub_index(mf_u().ind_basic_dof_of_element(cvn))), coeff2);
getfem::fem_interpolation_context ctx2(pgt2, pf2, base_node(N), G2, cvn);
gic.init(mesh.points_of_convex(cvn), pgt2);
for (unsigned ii=0; ii < pai1->nb_points_on_face(f1); ++ii) {
ctx1.set_xref(pai1->point_on_face(f1, ii));
gmm::mult(ctx1.B(), pgt1->normals()[f1], up);
scalar_type norm = gmm::vect_norm2(up);
up /= norm;
scalar_type coefficient = pai1->coeff_on_face(f1, ii) * ctx1.J() * norm;
pf1->interpolation_grad(ctx1, coeff1, grad1, dim_type(qdim));
gmm::copy(grad1, E); gmm::add(gmm::transposed(grad1), E);
gmm::scale(E, 0.5);
scalar_type trace = gmm::mat_trace(E);
gmm::copy(gmm::identity_matrix(), S1);
gmm::scale(S1, lambda * trace);
gmm::add(gmm::scaled(E, 2*mu), S1);
bool converged;
gic.invert(ctx1.xreal(), xref2, converged);
GMM_ASSERT1(converged, "geometric transformation not well inverted ... !");
ctx2.set_xref(xref2);
pf2->interpolation_grad(ctx2, coeff2, grad2, dim_type(qdim));
gmm::copy(grad2, E); gmm::add(gmm::transposed(grad2), E);
gmm::scale(E, 0.5);
trace = gmm::mat_trace(E);
gmm::copy(gmm::identity_matrix(), S2);
gmm::scale(S2, lambda * trace);
gmm::add(gmm::scaled(E, 2*mu), S2);
gmm::mult(S1, up, jump);
gmm::mult_add(S2, gmm::scaled(up, -1.0), jump);
ERR[cv] +=radius * coefficient * gmm::vect_norm2_sqr(jump);
}
}
// if (ERR[cv]-ee > 100)
// cout << "Erreur en contrainte inter element sur element " << cv << " : " << ERR[cv]-ee << endl;
//ERR[cv] = sqrt(ERR[cv]);
}
}
bool crack_problem::solve(plain_vector &U) {
size_type N = mesh.dim();
dal::bit_vector conv_to_refine;
bool iteration;
do {
cout << "Number of elements : "<< mesh.convex_index().card() << endl;
size_type nb_dof_rhs = mf_rhs.nb_dof();
ls.reinit();
for (size_type d = 0; d < ls.get_mesh_fem().nb_dof(); ++d) {
base_small_vector
v = ls_function(ls.get_mesh_fem().point_of_basic_dof(d), option);
ls.values(0)[d] = v[0];
ls.values(1)[d] = v[1];
}
ls.touch();
mls.adapt();
mim.adapt();
mfls_u.adapt();
mimbound.adapt();
exact_sol.init(1,lambda, mu,ls);
cout << "Setting up the singular functions for the enrichment\n";
std::vector<getfem::pglobal_function> vfunc(4);
for (unsigned i = 0; i < vfunc.size(); ++i) {
/* use the singularity */
getfem::pxy_function
s = std::make_shared<getfem::crack_singular_xy_function>(i);
getfem::pxy_function
c = std::make_shared<getfem::cutoff_xy_function>
(int(cutoff.fun_num), cutoff.radius, cutoff.radius1, cutoff.radius0);
s = std::make_shared<getfem::product_of_xy_functions>(s, c);
vfunc[i] = getfem::global_function_on_level_set(ls, s);
}
mf_sing_u.set_functions(vfunc);
if (PARAM.int_value("ENRICHED", "Enrichment with singular functions")) {
cout << "enriched version\n";
mf_u_sum.set_mesh_fems(mf_sing_u, mfls_u);
}
else {
cout << "nonenriched version\n";
mf_u_sum.set_mesh_fems(mfls_u);
}
U.resize(mf_u().nb_dof());
getfem::model model;
model.add_fem_variable("u", mf_u());
model.add_initialized_scalar_data("lambda", lambda);
model.add_initialized_scalar_data("mu", mu);
getfem::add_isotropic_linearized_elasticity_brick
(model, mim, "u", "lambda", "mu");
// Defining the volumic source term.
plain_vector F(nb_dof_rhs * N);
getfem::interpolation_function(mf_rhs, F, sol_f);
model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(model, mim, "u", "VolumicData");
// Defining the Neumann condition right hand side.
getfem::interpolation_function(mf_rhs, F, sol_F, NEUMANN_BOUNDARY_NUM1);
model.add_initialized_fem_data("NeumannData", mf_rhs, F);
getfem::add_source_term_brick
(model, mim, "u", "NeumannData", NEUMANN_BOUNDARY_NUM1);
// Dirichlet condition brick.
if (option == 0)
model.add_initialized_fem_data("DirichletData", exact_sol.mf,exact_sol.U);
if (dir_with_mult)
getfem::add_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_mult, DIRICHLET_BOUNDARY_NUM,
(option == 0) ? "DirichletData" : "");
else
getfem::add_Dirichlet_condition_with_penalization
(model, mim, "u", 1E15, DIRICHLET_BOUNDARY_NUM,
(option == 0) ? "DirichletData" : "");
// Generic solve.
cout << "Total number of variables : " << model.nb_dof() << endl;
gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(model, iter);
// Solution extraction
gmm::copy(model.real_variable("u"), U);
iteration = iter.converged();
conv_to_refine.clear();
// Adapted Refinement (suivant une erreur a posteriori)
// j=0;
if (adapted_refine==0) {
plain_vector ERR(mesh.convex_index().last_true()+1);
error_estimate(U, ERR);
cout<<"u="<<gmm::sub_vector(U,gmm::sub_interval(0,8))<<endl;
cout<<"exact="<<exact_sol.U<<endl;
cout << "erreur=" <<gmm::vect_norm2(ERR)<< endl;}
if (adapted_refine && mesh.convex_index().card() < conv_max) {
plain_vector ERR(mesh.convex_index().last_true()+1);
error_estimate(U, ERR);
cout << "erreur=" <<gmm::vect_norm2(ERR)<< endl;
// getfem::error_estimate(mim, mf_u(), U, ERR);(
// cout << "ERR = " << ERR << endl;
cout << "max = " << gmm::vect_norminf(ERR) << endl;
scalar_type threshold = PARAM.real_value("REFINE_THRESHOLD",
"threshold for the refinement");
scalar_type min_radius_elt = PARAM.real_value("MIN_RADIUS_ELT",
"Min radius for an element");
scalar_type min_ = 1e18;
conv_to_refine.clear();
for (dal::bv_visitor i(mesh.convex_index()); !i.finished(); ++i) {
if (ERR[i] > threshold) {
if (mesh.convex_radius_estimate(i) > min_radius_elt)
conv_to_refine.add(i);
else cout << "Tried to refine elt " << i
<< " which is too small, radius "
<< mesh.convex_radius_estimate(i) << endl;
}
min_ = std::min(min_, ERR[i]);
}
cout << "min = " << min_ << endl;
cout << "Refining " << conv_to_refine.card() << " elements..."<< endl;
mesh.Bank_refine(conv_to_refine);
}
} while(adapted_refine && conv_to_refine.card() > 0);
mesh.write_to_file(datafilename + ".meshh");
cout << "Refining process complete. The mesh contains now "
<< mesh.convex_index().card() << " convexes "<<endl;
dal::bit_vector blocked_dof = mf_u().basic_dof_on_region(5);
getfem::mesh_fem mf_printed(mesh, dim_type(N)), mf_printed_vm(mesh);
std::string FEM_DISC = PARAM.string_value("FEM_DISC","fem disc ");
mf_printed.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(FEM_DISC));
mf_printed_vm.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(FEM_DISC));
plain_vector W(mf_printed.nb_dof());
getfem::interpolation(mf_u(), mf_printed, U, W);
mf_printed.write_to_file(datafilename + ".meshfem", true);
mf_printed_vm.write_to_file(datafilename + ".meshfem_vm", true);
gmm::vecsave(datafilename + ".U", W);
plain_vector VM(mf_printed_vm.nb_dof());
getfem::interpolation_von_mises(mf_printed, mf_printed_vm, W, VM);
gmm::vecsave(datafilename + ".VM", VM);
return (iteration);
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
//getfem::getfem_mesh_level_set_noisy();
try{
crack_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
p.mesh.write_to_file(p.datafilename + ".mesh");
plain_vector U(p.mf_u().nb_dof());
if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");
{
getfem::mesh mcut;
p.mls.global_cut_mesh(mcut);
unsigned Q = p.mf_u().get_qdim();
getfem::mesh_fem mf(mcut, dim_type(Q));
mf.set_classical_discontinuous_finite_element(2, 0.001);
// mf.set_finite_element
// (getfem::fem_descriptor("FEM_PK_DISCONTINUOUS(2, 2, 0.0001)"));
plain_vector V(mf.nb_dof());
getfem::interpolation(p.mf_u(), mf, U, V);
getfem::stored_mesh_slice sl;
getfem::mesh mcut_refined;
unsigned NX = unsigned(p.PARAM.int_value("NX")), nn;
if (NX < 6) nn = 24;
else if (NX < 12) nn = 8;
else if (NX < 30) nn = 3;
else nn = 1;
// choose an adequate slice refinement based on the distance to
// the crack tip
std::vector<bgeot::short_type> nrefine(mcut.convex_index().last_true()+1);
for (dal::bv_visitor cv(mcut.convex_index()); !cv.finished(); ++cv) {
scalar_type dmin=0, d;
base_node Pmin,P;
for (unsigned i=0; i < mcut.nb_points_of_convex(cv); ++i) {
P = mcut.points_of_convex(cv)[i];
d = gmm::vect_norm2(ls_function(P, p.option));
if (d < dmin || i == 0) { dmin = d; Pmin = P; }
}
if (dmin < 1e-5)
nrefine[cv] = short_type(nn*8);
else if (dmin < .1)
nrefine[cv] = short_type(nn*2);
else nrefine[cv] = short_type(nn);
// nrefine[cv] = 1;
// if (dmin < .01)
// cout << "cv: "<< cv << ", dmin = " << dmin << "Pmin=" << Pmin
// << " " << nrefine[cv] << "\n";
}
{
getfem::mesh_slicer slicer(mcut);
getfem::slicer_build_mesh bmesh(mcut_refined);
slicer.push_back_action(bmesh);
slicer.exec(nrefine, getfem::mesh_region::all_convexes());
}
// sl.build(mcut,
// getfem::slicer_build_mesh(mcut_refined), nrefine);
getfem::mesh_im mim_refined(mcut_refined);
mim_refined.set_integration_method(getfem::int_method_descriptor
("IM_TRIANGLE(6)"));
getfem::mesh_fem mf_refined(mcut_refined,dim_type(Q));
mf_refined.set_classical_discontinuous_finite_element(2, 0.0001);
plain_vector W(mf_refined.nb_dof());
getfem::interpolation(p.mf_u(), mf_refined, U, W);
p.exact_sol.mf.set_qdim(dim_type(Q));
assert(p.exact_sol.mf.nb_dof()==p.exact_sol.U.size());
plain_vector exac(mf_refined.nb_dof());
getfem::interpolation(p.exact_sol.mf, mf_refined, p.exact_sol.U,exac);
plain_vector diff(exac);
gmm::add(gmm::scaled(W,-1),diff);
//cout<<"exact="<<p.exact_sol.U<<endl;
// cout<<"U="<<gmm::sub_vector(U,gmm::sub_interval(0,8))<<endl;
if (p.PARAM.int_value("VTK_EXPORT")) {
getfem::mesh_fem mf_refined_vm(mcut_refined, 1);
mf_refined_vm.set_classical_discontinuous_finite_element(1, 0.0001);
cerr << "mf_refined_vm.nb_dof=" << mf_refined_vm.nb_dof() << "\n";
plain_vector VM(mf_refined_vm.nb_dof());
cout << "computing von mises\n";
getfem::interpolation_von_mises(mf_refined, mf_refined_vm, W, VM);
plain_vector D(mf_refined_vm.nb_dof() * Q),
DN(mf_refined_vm.nb_dof());
mf_refined.write_to_file(p.datafilename + ".meshfem2", true);
mf_refined_vm.write_to_file(p.datafilename + ".meshfem_vm2", false);
gmm::vecsave(p.datafilename + ".U2", W);
gmm::vecsave(p.datafilename + ".VM2", VM);
cout << "export to " << p.datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(p.datafilename + ".vtk",
p.PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(mf_refined);
//exp.write_point_data(mf_refined_vm, DN, "error");
exp.write_point_data(mf_refined_vm, VM, "von mises stress");
exp.write_point_data(mf_refined, W, "elastostatic_displacement");
exp.write_point_data(mf_refined,exac,"reference solution");
cout << "export done, you can view the data file with (for example)\n"
"mayavi2 -d " << p.datafilename << ".vtk -f "
"WarpVector -m Surface -m Outline\n";
}
cout<<"L2="<<getfem::asm_L2_dist(p.mim, p.mf_u(),U,p.exact_sol.mf,p.exact_sol.U)<< endl;
cout<<"H1="<<getfem::asm_H1_dist(p.mim, p.mf_u(),U,p.exact_sol.mf,p.exact_sol.U)<< endl;
cout<<"h1="<<getfem::asm_H1_norm(mim_refined,mf_refined,diff)<< endl;
}
}
GMM_STANDARD_CATCH_ERROR;
return 0;
}
|