1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
% Copyright (C) 2017-2017 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
% -*- matlab -*- (enables emacs matlab mode)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for program crack %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% pde parameters : %%%%%
% MU = 77.0; % Lam�coefficient.
% LAMBDA = 107.0; % Lam�coefficient.
MU = 1.0; % Lam�coefficient.
LAMBDA = 1.0; % Lam�coefficient.
BIMATERIAL = 0; % 1 : To enable the bimaterial case.
LAMBDA_UP = 100.0;
LAMBDA_DOWN=1.0;
MU_UP = 3.0;
MU_DOWN = 1.0;
REFINEMENT_RADIUS = 0.; % 0 for no refinement
REFINEMENT_PROCESS = 2;
ADAPTED_REFINE = 1; % 0 to disable adapted refinement
% 1 to enable it
CONV_MAX = 60000; % maximal number of convexes
%%%%% discretisation parameters : %%%%%
MESH_TYPE = 'GT_PK(2,1)'; % linear triangles
%MESH_TYPE = 'GT_LINEAR_QK(2)'; % linear rectangles
%MESH_TYPE = 'GT_PRISM(3,1)'; % 3D prisms
LX = 1; % mesh size x'ox
LY = 1; % mesh size y'oy
NX = 60; % space step.
mode = 12; % 1 for the opening mode 1
% 2 for the mode 2
% 12 for a combination of mode 1 and mode 2
NEUMANN_VALUE = 0.2; % Neumann Force Value
% F1
%F11 = 0.; F12 = 0.2 ; % -----------|D
%F21 = 0.; F22 = 0. ; % F2 | |I
%F31 = 0.; F32 = 0. ; % ----- |R
%F41 = 0.; F42 = -0.2 ; % F3 | |C
% -----------|H
% F4
all_dirichlet = 0; % Choose 1 To impose a dirichlet displacement all over the borders
MESH_NOISE = 0; % Set to one if you want to "shake" the mesh
%FEM_TYPE = 'FEM_PK_WITH_CUBIC_BUBBLE(2, 2)';
FEM_TYPE = 'FEM_PK(2, 2)'; % PK element
%FEM_TYPE = 'FEM_QK(2,1)'; % Q1 fem for quadrangles
%FEM_TYPE = 'FEM_HERMITE_SEGMENT'; % (broken) Hermite fem on a segment
%FEM_TYPE = 'FEM_PK_HIERARCHICAL(2,2)'; % Hierarchical PK on simplexes
FEM_DISC = 'FEM_PK_DISCONTINUOUS(2,3,0.0001)'; % Discontinuous P1 for triangles
MIXED_PRESSURE=0; % Mixed version or not.
FEM_TYPE_P = 'FEM_PK(3,3)'; % P1 for triangles
FEM_TYPE_P = 'FEM_PK_DISCONTINUOUS(2,0)'; % Discontinuous P1 for triangles
% DATA_FEM_TYPE must be defined if your main FEM is not Lagrangian
DATA_FEM_TYPE = 'FEM_PK(2,2)';
%DATA_FEM_TYPE = 'FEM_QK(2,1)';
%INTEGRATION = 'IM_TETRAHEDRON(6)'; % quadrature rule for polynomials up
% to degree 6 on tetra
% integration meth. for sub-simplexe of elements crossed by the level-set
SIMPLEX_INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)';
% integration meth. for quasi-polar integration of sub-simplexes adjascent to the level-set
% (comment it to disable quasipolar integration). Should be a
% method defined on a square for 2D, or defined on a prism for 3D.
% SINGULAR_INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(2, 10)';
SINGULAR_INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2, 6), 9)';
INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6), 5)';
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2, 2), 5)';
%INTEGRATION = 'IM_EXACT_SIMPLEX(2)'; % exact integration on triangles
%INTEGRATION = 'IM_NC(2,6)'; % newton-cotes of degree 6 on triangles
%SIMPLEX_INTEGRATION = 'IM_TRIANGLE(6)';
%INTEGRATION = 'IM_TRIANGLE(6)';
RESIDUAL = 1E-9; % residual for iterative methods if any.
%%%%% saving parameters %%%%%
ROOTFILENAME = 'bimaterial_crack'; % Root of data files.
VTK_EXPORT = 2 % export solution to a .vtk file ?
|