File: opt_assembly.cc

package info (click to toggle)
getfem%2B%2B 5.3%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 35,604 kB
  • sloc: cpp: 117,991; ansic: 73,600; fortran: 16,046; python: 7,403; sh: 3,624; perl: 1,722; makefile: 1,548
file content (782 lines) | stat: -rw-r--r-- 30,872 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*===========================================================================

 Copyright (C) 2007-2017 Yves Renard, Julien Pommier.

 This file is a part of GetFEM++

 GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

===========================================================================*/
#include "getfem/getfem_assembling.h"
#include "getfem/getfem_generic_assembly.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_partial_mesh_fem.h"
#include "getfem/getfem_mat_elem.h"
#include "gmm/gmm.h"
#ifdef GETFEM_HAVE_SYS_TIMES
# include <sys/times.h>
#endif
#ifndef _MSC_VER
#include <unistd.h>
#endif
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
using std::flush;

using bgeot::base_vector;
using bgeot::base_matrix;
using bgeot::base_small_vector;
using bgeot::base_node;
using bgeot::scalar_type;
using bgeot::size_type;
using bgeot::short_type;
using bgeot::dim_type;

typedef gmm::wsvector<scalar_type> sparse_vector_type;
typedef gmm::row_matrix<sparse_vector_type> sparse_matrix_type;
typedef std::vector<scalar_type> linalg_vector;



#ifdef HAVE_SYS_TIMES
struct chrono {
  struct ::tms t;
  ::clock_t t_elapsed;
  float cpu_, elapsed_, system_;
  float nbclocktk;
public:
  chrono() { nbclocktk = ::sysconf(_SC_CLK_TCK); }
  void init() { elapsed_=0; cpu_=0; system_ =0; }
  void tic() { t_elapsed = ::times(&t); }
  void toc() { 
    struct tms t2; ::clock_t t2_elapsed = ::times(&t2); 
    elapsed_ += (t2_elapsed - t_elapsed) / nbclocktk;
    cpu_     += (t2.tms_utime - t.tms_utime) / nbclocktk;
    system_  += (t2.tms_stime - t.tms_stime) / nbclocktk;
    memcpy(&t, &t2, sizeof(struct tms));
  }
  float cpu() const { return cpu_; }
  float elapsed() const { return elapsed_; }
  float system() const { return system_; }
};
#else
struct chrono {
  float t,cpu_;
public:
  chrono() { }
  void init() { cpu_=0; }
  void tic() { t = float(::clock())/float(CLOCKS_PER_SEC); }
  void toc() {
    float t2 = float(::clock())/float(CLOCKS_PER_SEC);
    cpu_ += t2 - t; t = t2;
  }
  float cpu() const { return cpu_; }
  float elapsed() const { return cpu_; }
  float system() const { return 0.; }
};
#endif

std::ostream& operator<<(std::ostream& o, const chrono& c) {
  o << "[elapsed=" << int(c.elapsed()*1000) << "ms, cpu="
    << int(c.cpu()*1000) << "ms, system=" << int(c.system()*1000) << "ms]";
  return o;
}

namespace getfem { // old assembly procedures with low level generic assembly

  /*
    assembly of a matrix with 1 parameter (real or complex)
    (the most common here for the assembly routines below)
  */
  template <typename MAT, typename VECT>
  void old_asm_real_or_complex_1_param
  (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data,
   const VECT &A, const mesh_region &rg, const char *assembly_description,
   const mesh_fem *mf_mult = 0) {
    old_asm_real_or_complex_1_param_
      (M, mim, mf_u, mf_data, A, rg, assembly_description, mf_mult,
       typename gmm::linalg_traits<VECT>::value_type());
  }

  /* real version */
  template<typename MAT, typename VECT, typename T>
  void old_asm_real_or_complex_1_param_
  (const MAT &M, const mesh_im &mim,  const mesh_fem &mf_u,
   const mesh_fem &mf_data, const VECT &A,  const mesh_region &rg,
   const char *assembly_description, const mesh_fem *mf_mult, T) {
    generic_assembly assem(assembly_description);
    assem.push_mi(mim);
    assem.push_mf(mf_u);
    assem.push_mf(mf_data);
    if (mf_mult) assem.push_mf(*mf_mult);
    assem.push_data(A);
    assem.push_mat_or_vec(const_cast<MAT&>(M));
    assem.assembly(rg);
  }

  /* complex version */
  template<typename MAT, typename VECT, typename T>
  void old_asm_real_or_complex_1_param_
  (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data,
   const VECT &A, const mesh_region &rg,const char *assembly_description,
   const mesh_fem *mf_mult, std::complex<T>) {
    old_asm_real_or_complex_1_param_(gmm::real_part(M),mim,mf_u,mf_data,
				 gmm::real_part(A),rg,
				 assembly_description, mf_mult, T());
    old_asm_real_or_complex_1_param_(gmm::imag_part(M),mim,mf_u,mf_data,
				 gmm::imag_part(A),rg,
				 assembly_description, mf_mult, T());
  }

  
  template<typename VECT1, typename VECT2>
  void old_asm_source_term
  (const VECT1 &B, const mesh_im &mim, const mesh_fem &mf,
   const mesh_fem &mf_data, const VECT2 &F,
   const mesh_region &rg = mesh_region::all_convexes()) {
    GMM_ASSERT1(mf_data.get_qdim() == 1 ||
		mf_data.get_qdim() == mf.get_qdim(),
		"invalid data mesh fem (same Qdim or Qdim=1 required)");

    const char *st;
    if (mf.get_qdim() == 1)
      st = "F=data(#2); V(#1)+=comp(Base(#1).Base(#2))(:,j).F(j);";
    else if (mf_data.get_qdim() == 1)
      st = "F=data(qdim(#1),#2);"
	"V(#1)+=comp(vBase(#1).Base(#2))(:,i,j).F(i,j);";
    else
      st = "F=data(#2);"
	"V(#1)+=comp(vBase(#1).vBase(#2))(:,i,j,i).F(j);";
    
    old_asm_real_or_complex_1_param(const_cast<VECT1 &>(B),mim,mf,
				    mf_data,F,rg,st);
  }

  template<typename VECT1, typename VECT2>
  void old_asm_normal_source_term(VECT1 &B, const mesh_im &mim,
				  const mesh_fem &mf,
				  const mesh_fem &mf_data, const VECT2 &F,
				  const mesh_region &rg) {
    GMM_ASSERT1(mf_data.get_qdim() == 1 ||
		mf_data.get_qdim() == mf.get_qdim(),
		"invalid data mesh_fem (same Qdim or Qdim=1 required)");

    const char *st;
    if (mf.get_qdim() == 1)
      st = "F=data(mdim(#1),#2);"
	"V(#1)+=comp(Base(#1).Base(#2).Normal())(:,j,k).F(k,j);";
    else if (mf_data.get_qdim() == 1)
      st = "F=data(qdim(#1),mdim(#1),#2);"
	"V(#1)+=comp(vBase(#1).Base(#2).Normal())(:,i,j,k).F(i,k,j);";
    else
      st = "F=data(mdim(#1),#2);"
	"V(#1)+=comp(vBase(#1).vBase(#2).Normal())(:,i,j,i,k).F(k,j);";

    old_asm_real_or_complex_1_param(B, mim, mf, mf_data, F, rg, st);
  }

  template<typename MAT>
  void old_asm_mass_matrix(const MAT &M, const mesh_im &mim,
		       const mesh_fem &mf_u1,
		       const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem;
    if (mf_u1.get_qdim() == 1)
      assem.set("M(#1,#1)+=sym(comp(Base(#1).Base(#1)))");
    else
      assem.set("M(#1,#1)+=sym(comp(vBase(#1).vBase(#1))(:,i,:,i));");
    assem.push_mi(mim);
    assem.push_mf(mf_u1);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }

  template<typename MAT>
  void old_asm_mass_matrix(const MAT &M, const mesh_im &mim, const mesh_fem &mf_u1,
		       const mesh_fem &mf_u2,
		       const mesh_region &rg = mesh_region::all_convexes()) {
    generic_assembly assem;
    if (mf_u1.get_qdim() == 1 && mf_u2.get_qdim() == 1)
      assem.set("M(#1,#2)+=comp(Base(#1).Base(#2))");
    else if (mf_u1.get_qdim() == 1)
      assem.set("M(#1,#2)+=comp(Base(#1).vBase(#2))(:,:,1);"); // could be i in place of 1
    else if (mf_u2.get_qdim() == 1)
      assem.set("M(#1,#2)+=comp(vBase(#1).Base(#2))(:,1,:);");
    else
      assem.set("M(#1,#2)+=comp(vBase(#1).vBase(#2))(:,i,:,i);");
    assem.push_mi(mim);
    assem.push_mf(mf_u1);
    assem.push_mf(mf_u2);
    assem.push_mat(const_cast<MAT &>(M));
    assem.assembly(rg);
  }

  /** 
      Stiffness matrix for linear elasticity, with Lam coefficients
      @ingroup asm
  */
  template<class MAT, class VECT>
  void old_asm_stiffness_matrix_for_linear_elasticity
  (const MAT &RM_, const mesh_im &mim, const mesh_fem &mf,
   const mesh_fem &mf_data, const VECT &LAMBDA, const VECT &MU,
   const mesh_region &rg = mesh_region::all_convexes()) {
    MAT &RM = const_cast<MAT &>(RM_);
    GMM_ASSERT1(mf_data.get_qdim() == 1,
		"invalid data mesh fem (Qdim=1 required)");
    
    GMM_ASSERT1(mf.get_qdim() == mf.linked_mesh().dim(),
		"wrong qdim for the mesh_fem");
    /* e = strain tensor,
       M = 2*mu*e(u):e(v) + lambda*tr(e(u))*tr(e(v))
    */
    generic_assembly assem("lambda=data$1(#2); mu=data$2(#2);"
			   "t=comp(vGrad(#1).vGrad(#1).Base(#2));"
			   //"e=(t{:,2,3,:,5,6,:}+t{:,3,2,:,5,6,:}"
			   //"+t{:,2,3,:,6,5,:}+t{:,3,2,:,6,5,:})/4;"
			   //"e=(t{:,2,3,:,5,6,:}+t{:,3,2,:,5,6,:})*0.5;"
			   /*"M(#1,#1)+= sym(2*e(:,i,j,:,i,j,k).mu(k)"
                             " + e(:,i,i,:,j,j,k).lambda(k))");*/
                           "M(#1,#1)+= sym(t(:,i,j,:,i,j,k).mu(k)"
			   "+ t(:,j,i,:,i,j,k).mu(k)"
			   "+ t(:,i,i,:,j,j,k).lambda(k))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_mf(mf_data);
    assem.push_data(LAMBDA);
    assem.push_data(MU);
    assem.push_mat(RM);
    assem.assembly(rg);
  }


  /** 
      Stiffness matrix for linear elasticity, with constant Lam coefficients
      @ingroup asm
  */
  template<class MAT, class VECT>
  void old_asm_stiffness_matrix_for_homogeneous_linear_elasticity
  (const MAT &RM_, const mesh_im &mim, const mesh_fem &mf,
   const VECT &LAMBDA, const VECT &MU,
   const mesh_region &rg = mesh_region::all_convexes()) {
    MAT &RM = const_cast<MAT &>(RM_);
    GMM_ASSERT1(mf.get_qdim() == mf.linked_mesh().dim(),
		"wrong qdim for the mesh_fem");
    generic_assembly assem("lambda=data$1(1); mu=data$2(1);"
			   "t=comp(vGrad(#1).vGrad(#1));"
                           "M(#1,#1)+= sym(t(:,i,j,:,i,j).mu(1)"
			   "+ t(:,j,i,:,i,j).mu(1)"
			   "+ t(:,i,i,:,j,j).lambda(1))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_data(LAMBDA);
    assem.push_data(MU);
    assem.push_mat(RM);
    assem.assembly(rg);
  }

  template<typename MAT>
  void old_asm_stiffness_matrix_for_homogeneous_laplacian
  (const MAT &M_, const mesh_im &mim, const mesh_fem &mf,
   const mesh_region &rg = mesh_region::all_convexes()) {
    MAT &M = const_cast<MAT &>(M_);
    generic_assembly 
      assem("M$1(#1,#1)+=sym(comp(Grad(#1).Grad(#1))(:,i,:,i))");
    assem.push_mi(mim);
    assem.push_mf(mf);
    assem.push_mat(M);
    assem.assembly(rg);
  }
  
}



#define VEC_TEST_1(title, ndof, expr, mim_, region, I_, old_asm)        \
  cout << "\n" << title << endl;                                        \
  ch.init(); ch.tic(); workspace.clear_expressions();			\
  workspace.add_expression(expr, mim_, region);                         \
  workspace.assembly(1); ch.toc();					\
  cout << "Elapsed time for new assembly " << ch.elapsed() << endl;     \
  getfem::base_vector V(ndof), V2(ndof);                                \
  ch.init(); ch.tic(); old_asm; ch.toc();                               \
  gmm::copy(V, V2);                                                     \
  cout << "Elapsed time for old assembly " << ch.elapsed() << endl;     \
  gmm::add(gmm::scaled(gmm::sub_vector(workspace.assembled_vector(),    \
                                       I_), scalar_type(-1)), V);       \
  scalar_type norm_error = gmm::vect_norminf(V);                        \
  cout << "Error : " << norm_error << endl;

#define VEC_TEST_2(ndof, expr, mim_, region, I_)                        \
  ch.init(); ch.tic(); workspace.clear_expressions();			\
  workspace.add_expression(expr, mim_, region);                         \
  workspace.assembly(1); ch.toc();					\
  cout << "Elapsed time for new assembly, alternative expression "      \
          << ch.elapsed() << endl;                                      \
  gmm::copy(V2, V);                                                     \
  gmm::add(gmm::scaled(gmm::sub_vector(workspace.assembled_vector(),    \
                                       I_), scalar_type(-1)), V);       \
  scalar_type norm_error = gmm::vect_norminf(V);                        \
  cout << "Error : " << norm_error << endl;

#define VEC_TEST_3(title, ndof, expr, mim_, region)			\
  cout << "\n" << title << endl;                                        \
  ch.init(); ch.tic(); workspace.clear_expressions();			\
  workspace.add_expression(expr, mim_, region);                         \
  workspace.assembly(1); ch.toc();					\
  cout << "Elapsed time for new assembly " << ch.elapsed() << endl;

#define MAT_TEST_1(title, ndof1, ndof2, expr, mim_, I1_, I2_, old_asm)  \
  cout << "\n" << title << endl;					\
  getfem::model_real_sparse_matrix K(ndof1, ndof2), K2(ndof1, ndof2);   \
  getfem::model_real_sparse_matrix K3(I1_.last()+1, I2_.last()+1);	\
  ch.init(); ch.tic(); workspace.clear_expressions();			\
  workspace.set_assembled_matrix(K3);					\
  workspace.add_expression(expr, mim_);					\
  workspace.assembly(2); ch.toc();					\
  cout << "Elapsed time for new assembly " << ch.elapsed() << endl;     \
  ch.init(); ch.tic(); old_asm; ch.toc();				\
  gmm::copy(K, K2);                                                     \
  cout << "Elapsed time for old assembly " << ch.elapsed() << endl;     \
  gmm::add(gmm::scaled(gmm::sub_matrix(K3,I1_, I2_),			\
                       scalar_type(-1)), K);				\
  scalar_type norm_error = gmm::mat_norminf(K);                         \
  cout << "Error : " << norm_error << endl;


#define MAT_TEST_2(nbdof1, nbdof2, expr, mim_, I1_, I2_)                \
  gmm::clear(K3);							\
  ch.init(); ch.tic(); workspace.clear_expressions();			\
  workspace.add_expression(expr, mim_);                                 \
  workspace.assembly(2);   ch.toc();					\
  cout << "Elapsed time for new assembly, alternative expression "      \
          << ch.elapsed() << endl;                                      \
  gmm::copy(K2, K);                                                     \
  gmm::add(gmm::scaled(gmm::sub_matrix(K3, I1_, I1_),			\
		       scalar_type(-1)), K);				\
  norm_error = gmm::mat_norminf(K);                                     \
  cout << "Error : " << norm_error << endl;



static void test_new_assembly(int N, int NX, int pK) {

  
  cout << "\n\n-------------------------------------\n"
       <<     "Tests in dimension " << N << " with P" << pK << " elements"
       <<   "\n-------------------------------------"
       << endl << endl;

    

  getfem::ga_workspace workspace;
  base_vector a(1); a[0] = 3.0;
  workspace.add_fixed_size_constant("a", a);
  base_vector b(2); b[0] = 3.0; b[1] = 6.0;
  workspace.add_fixed_size_constant("b", b);
  // base_vector c(1); c[0] = 1.0;
  // workspace.add_fixed_size_variable("c", gmm::sub_interval(0, 1), c);
  
  getfem::mesh m;
  
  char Ns[5]; sprintf(Ns, "%d", N);
  char Ks[5]; sprintf(Ks, "%d", pK);
  bgeot::pgeometric_trans pgt =
    bgeot::geometric_trans_descriptor
    ((std::string("GT_PK(") + Ns + ",1)").c_str());
  std::vector<size_type> nsubdiv(N, NX);
  getfem::regular_unit_mesh(m, nsubdiv, pgt);
  
  const size_type NEUMANN_BOUNDARY_NUM = 1;
  const size_type DIRICHLET_BOUNDARY_NUM = 2;
  
  base_small_vector Dir(N); Dir[N-1] = 1.0;
  getfem::mesh_region border_faces = getfem::outer_faces_of_mesh(m);
  getfem::mesh_region Neumann_faces
    = getfem::select_faces_of_normal(m, border_faces, Dir, 0.1);
  m.region(NEUMANN_BOUNDARY_NUM) = Neumann_faces;
  m.region(DIRICHLET_BOUNDARY_NUM)
    = getfem::mesh_region::subtract(border_faces, Neumann_faces);
  
  
  getfem::mesh_fem mf_u(m);
  getfem::pfem pf_u = getfem::fem_descriptor
    ((std::string("FEM_PK(") + Ns + "," + Ks + ")").c_str());
  mf_u.set_finite_element(m.convex_index(), pf_u);
  mf_u.set_qdim(dim_type(N));
  
  getfem::mesh_fem mf_p(m);
  getfem::pfem pf_p = getfem::fem_descriptor
    ((std::string("FEM_PK(") + Ns + "," + Ks + ")").c_str());
  mf_p.set_finite_element(m.convex_index(), pf_p);
  
  getfem::mesh_im mim(m);
  mim.set_integration_method(m.convex_index(), dim_type(2*pK));
  
  getfem::mesh_im mim2(m);
  mim2.set_integration_method(m.convex_index(), dim_type(2*pK-2));
  
  std::vector<scalar_type> U(mf_u.nb_dof());
  gmm::fill_random(U);
  std::vector<scalar_type> A(mf_u.nb_dof()*N);
  gmm::fill_random(A);
  std::vector<scalar_type> P(mf_p.nb_dof());
  gmm::fill_random(P);
  size_type ndofu = mf_u.nb_dof(), ndofp = mf_p.nb_dof();
  cout << "ndofu = " << ndofu << " ndofp = " << ndofp;
  
  gmm::sub_interval Iu(0, ndofu);
  gmm::sub_interval Ip(ndofu, ndofp);
  
  workspace.add_fem_variable("u", mf_u, Iu, U);
  workspace.add_fem_constant("A", mf_u, A);
  workspace.add_fem_variable("p", mf_p, Ip, P);
  
  getfem::partial_mesh_fem mf_chi(mf_p);
  dal::bit_vector kept_dof
    = mf_p.basic_dof_on_region(DIRICHLET_BOUNDARY_NUM);
  mf_chi.adapt(kept_dof);
  
  size_type ndofchi = mf_chi.nb_dof();
  cout << " ndofchi = " << ndofchi << endl;
  std::vector<scalar_type> chi(ndofchi);
  gmm::fill_random(chi);
  gmm::sub_interval Ichi(ndofu+ndofp, ndofchi);
  workspace.add_fem_variable("chi", mf_chi, Ichi, chi);
  
  
  
  chrono ch;
  
  bool all = false;
  bool select = true;
  int only_one = 6;

  if (all || select || only_one == 1) {
    VEC_TEST_1("Test for source term", ndofu, "u.Test_u", mim, size_type(-1),
	       Iu, getfem::old_asm_source_term(V, mim, mf_u, mf_u, U));
    
  }
  
  if (all ||  select || only_one == 2) {
    VEC_TEST_3("Test for nonlinear residual", ndofu, "Det(Grad_u)", mim,
	       size_type(-1));
  }

  if (all || only_one == 3) {
    
    {VEC_TEST_1("Test for Neumann term", ndofu, "u.Test_u",
		mim, NEUMANN_BOUNDARY_NUM,
		Iu, getfem::old_asm_source_term(V, mim, mf_u, mf_u,
					    U, NEUMANN_BOUNDARY_NUM));}
    
    {VEC_TEST_1("Test for Neumann term", ndofu,
		"(((Reshape(A,meshdim,meshdim))')*Normal).Test_u",
		mim, NEUMANN_BOUNDARY_NUM,
		Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
						   A, NEUMANN_BOUNDARY_NUM));}
    
    if (N == 2)
      {VEC_TEST_1("Test for Neumann term", ndofu,
                  "(A'*Normal).Test_u", mim,
                  NEUMANN_BOUNDARY_NUM,
                  Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
						     A, NEUMANN_BOUNDARY_NUM));}
    if (N == 3)
      {VEC_TEST_1("Test for Neumann term", ndofu,
                  "(A'*Normal).Test_u", mim, NEUMANN_BOUNDARY_NUM,
                  Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
						     A, NEUMANN_BOUNDARY_NUM));}
  }
  
  if (all || only_one == 4) {
    {VEC_TEST_1("Test for Neumann term with reduced fem", ndofchi,
		"p*Test_chi", mim, DIRICHLET_BOUNDARY_NUM,
		Ichi, getfem::old_asm_source_term(V, mim, mf_chi, mf_p,
					      P, DIRICHLET_BOUNDARY_NUM));}
  }
  
  
  
  
  if (all || select || only_one == 5) {
    MAT_TEST_1("Test for scalar Mass matrix", ndofp, ndofp, "Test_p.Test2_p",
	       mim, Ip, Ip,  getfem::old_asm_mass_matrix(K, mim, mf_p));
  }

  // if (all || select || only_one == 6) {
  //   std::vector<scalar_type> Ca(mf_p.nb_dof());
  //   gmm::fill_random(Ca);
  //   workspace.add_fem_constant("Ca", mf_p, Ca);
  //   MAT_TEST_1("Test for vector Mass matrix", ndofu, ndofu,
  //              "(Ca*Test_u).Test2_u",
  // 	          mim, Iu, Iu,
  //              getfem::old_asm_mass_matrix_param(K, mim, mf_u, mf_p, Ca));
  // }
  
  if (all || select || only_one == 6) {
    MAT_TEST_1("Test for vector Mass matrix", ndofu, ndofu, "(Test_u).Test2_u",
   	       mim, Iu, Iu,  getfem::old_asm_mass_matrix(K, mim, mf_u));
  }

  if (all || select || only_one == 7) {
    MAT_TEST_1("Test for Laplacian stiffness matrix", ndofp, ndofp,
	       "Grad_Test_p:Grad_Test2_p", mim2, Ip, Ip,
	       getfem::old_asm_stiffness_matrix_for_homogeneous_laplacian
	       (K, mim2, mf_p));
    // MAT_TEST_2(ndofp, ndofp, "(Grad_p:Grad_p)/2", mim2, Ip, Ip);
    // MAT_TEST_2(ndofp, ndofp, "sqr(Norm(Grad_p))/2", mim2, Ip, Ip);
    if (all) {
      MAT_TEST_2(ndofp, ndofp, "Norm_sqr(Grad_p)/2", mim2, Ip, Ip);
    }
    if (all && N == 2) {
      MAT_TEST_2(ndofp, ndofp,
		 "(sqr(Grad_p(1)) + sqr(Grad_p(2)))/2", mim2, Ip, Ip);
      MAT_TEST_2(ndofp, ndofp,
		 "(Grad_p(1)*Grad_p(1) + Grad_p(2)*Grad_p(2))/2",
		 mim2, Ip, Ip);
      MAT_TEST_2(ndofp, ndofp,
		 "([Grad_p(2); Grad_p(1)].[Grad_p(2); Grad_p(1)])/2",
		 mim2, Ip, Ip);
      MAT_TEST_2(ndofp, ndofp, "sqr(Norm([Grad_p(2); Grad_p(1)]))/2",
		 mim2, Ip, Ip);
    }
    if (all && N == 3) {
      MAT_TEST_2(ndofp, ndofp,
		 "(sqr(Grad_p(1)) + sqr(Grad_p(2)) + sqr(Grad_p(3)))/2",
		 mim2, Ip, Ip);
      MAT_TEST_2(ndofp, ndofp,
		 "(Grad_p(1)*Grad_p(1) + Grad_p(2)*Grad_p(2)"
		 "+ Grad_p(3)*Grad_p(3))/2", mim2, Ip, Ip);
      MAT_TEST_2(ndofp, ndofp,
		 "([Grad_p(1); Grad_p(3); Grad_p(2)]."
		 "[Grad_p(1); Grad_p(3); Grad_p(2)])/2",
		 mim2, Ip, Ip);
    }
  }
  
  if (all || select || only_one == 8) {
    base_vector lambda(1); lambda[0] = 3.0;
    workspace.add_fixed_size_constant("lambda", lambda);
    base_vector mu(1); mu[0] = 2.0;
    workspace.add_fixed_size_constant("mu", mu);
    
    MAT_TEST_1("Test for linear homogeneous elasticity stiffness matrix",
	       ndofu, ndofu, "(Div_Test_u*(lambda*Id(qdim(u))) "
	       "+ (2*mu)*Sym(Grad_Test_u)):Grad_Test2_u", mim2,
	       Iu, Iu,
	       getfem::old_asm_stiffness_matrix_for_homogeneous_linear_elasticity
	       (K, mim2, mf_u, lambda, mu));

    if (all) {
      MAT_TEST_2(ndofu, ndofu, "lambda*Div_Test_u*Div_Test2_u "
		 "+ mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u", mim2, Iu, Iu);
    }
    
    // MAT_TEST_2(ndofu, ndofu,
    //           "lambda*((Grad_Test2_u@Grad_Test_u):Id(meshdim))"
    //           ":Id(meshdim) + mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
    //           mim2, Iu, Iu);
    
    // MAT_TEST_2(ndofu, ndofu,
    //           "lambda*Id(meshdim)@Id(meshdim)*Grad_Test_u"
    //           ":Grad_Test2_u + mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
    //           mim2, Iu, Iu);
    
    // MAT_TEST_2(ndofu, ndofu,
    //           "lambda*(Id(meshdim)*Id(meshdim))@Id(meshdim)"
    //           "*Grad_Test_u:Grad_Test2_u"
    //           "+ mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
    //           mim2, Iu, Iu);
    
    if (N == 2 && all) {
      MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
		 "+mu*(Grad_Test_u'(:,1)"
		 "+Grad_Test_u(:,1)):Grad_Test2_u(:,1)"
		 "+mu*(Grad_Test_u'(:,2)"
		 "+Grad_Test_u(:,2)):Grad_Test2_u(:,2) ", mim2, Iu, Iu);
      
      MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
		 "+mu*(Grad_Test_u'(1,:)"
		 "+Grad_Test_u(1,:)):Grad_Test2_u(1,:)"
		 "+mu*(Grad_Test_u'(2,:)"
		 "+Grad_Test_u(2,:)):Grad_Test2_u(2,:) ", mim2, Iu, Iu);
    }

    if (N == 3 && all) {
      MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
		 "+mu*(Grad_Test_u'(:,1)"
		 "+Grad_Test_u(:,1)):Grad_Test2_u(:,1)"
		 "+mu*(Grad_Test_u'(:,2)"
		 "+Grad_Test_u(:,2)):Grad_Test2_u(:,2)"
		 "+mu*(Grad_Test_u'(:,3)"
		 "+Grad_Test_u(:,3)):Grad_Test2_u(:,3) ", mim2, Iu, Iu);
      
      MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
		 "+ mu*(Grad_Test_u'(1,:)"
		 "+Grad_Test_u(1,:)):Grad_Test2_u(1,:)"
		 "+ mu*(Grad_Test_u'(2,:)"
		 "+Grad_Test_u(2,:)):Grad_Test2_u(2,:)"
		 "+mu*(Grad_Test_u'(3,:)"
		 "+Grad_Test_u(3,:)):Grad_Test2_u(3,:) ", mim2, Iu, Iu);
    }
  }
  
  if (all || select || only_one == 9) {
    base_vector lambda2(ndofp, 3.0);
    workspace.add_fem_constant("lambda2", mf_p, lambda2);
    base_vector mu2(ndofp, 2.0);
    workspace.add_fem_constant("mu2", mf_p, mu2);
    
    MAT_TEST_1("Test for linear non homogeneous elasticity stiffness matrix",
	       ndofu, ndofu, "(Div_Test_u*(lambda2*Id(meshdim)) "
	       "+ (2*mu2)*Sym(Grad_Test_u)):Grad_Test2_u",
	       mim2, Iu, Iu,
	       getfem::old_asm_stiffness_matrix_for_linear_elasticity
	       (K, mim2, mf_u, mf_p, lambda2, mu2));
  }
}


int main(int /* argc */, char * /* argv */[]) {

  GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
  FE_ENABLE_EXCEPT;        // Enable floating point exception for Nan.
  
  bool all = true;
  int only_one = 5;

  // Mesured times for
  // - new assembly,
  // - old one,
  // - estimate of the storage in sparse matrices part for the new assembly,
  // - global assembly part (assembly instruction),
  // - ga_exec cost (instructions not executed, includes the compilation and 
  //   workspace initialization),
  // - J computation.
  // - Instructions execution except for assembly ones
  //                        new  | old  | sto  | asse | exec | Ins  |
  if (all || only_one == 1) // ndofu = 321602 ndofp = 160801 ndofchi = 1201
    test_new_assembly(2, 400, 1);
  // Vector source term   : 0.19 | 0.66 |
  // Nonlinear residual   : 0.26 |      |
  // Mass (scalar)        : 0.18 | 0.56 | 0.04 | 0.06 | 0.06 | 0.06 |
  // Mass (vector)        : 0.27 | 0.80 | 0.08 | 0.11 | 0.06 | 0.09 |
  // Laplacian            : 0.15 | 0.80 | 0.04 | 0.05 | 0.06 | 0.04 |
  // Homogeneous elas     : 0.30 | 1.88 | 0.08 | 0.14 | 0.06 | 0.10 |
  // Non-homogeneous elast: 0.34 | 2.26 | 0.09 | 0.15 | 0.06 | 0.13 |
  if (all || only_one == 2) // ndofu = 151959 ndofp =  50653 ndofchi = 6553
    test_new_assembly(3, 36, 1);
  // Vector source term   : 0.22 | 0.79 |
  // Nonlinear residual   : 0.40 |      |
  // Mass (scalar)        : 0.21 | 0.58 | 0.05 | 0.09 | 0.08 | 0.05 |
  // Mass (vector)        : 0.36 | 1.37 | 0.12 | 0.17 | 0.08 | 0.11 |
  // Laplacian            : 0.17 | 1.13 | 0.03 | 0.06 | 0.08 | 0.03 |
  // Homogeneous elas     : 0.59 | 4.25 | 0.26 | 0.33 | 0.08 | 0.18 |
  // Non-homogeneous elast: 0.63 | 6.29 | 0.26 | 0.33 | 0.08 | 0.22 |
  if (all || only_one == 3) // ndofu = 321602 ndofp = 160801 ndofchi = 1201
    test_new_assembly(2, 200, 2);
  // Vector source term   : 0.08 | 0.23 |
  // Nonlinear residual   : 0.11 |      |
  // Mass (scalar)        : 0.08 | 0.25 | 0.02 | 0.03 | 0.03 | 0.02 |
  // Mass (vector)        : 0.15 | 0.44 | 0.05 | 0.07 | 0.03 | 0.05 |
  // Laplacian            : 0.07 | 0.37 | 0.02 | 0.03 | 0.03 | 0.01 |
  // Homogeneous elas     : 0.22 | 1.28 | 0.06 | 0.10 | 0.03 | 0.09 |
  // Non-homogeneous elast: 0.24 | 2.38 | 0.06 | 0.10 | 0.03 | 0.11 |
  if (all || only_one == 4) // ndofu = 151959 ndofp =  50653 ndofchi = 6553
    test_new_assembly(3, 18, 2);
  // Vector source term   : 0.09 | 0.23 |
  // Nonlinear residual   : 0.20 |      |
  // Mass (scalar)        : 0.11 | 0.25 | 0.05 | 0.05 | 0.03 | 0.03 |
  // Mass (vector)        : 0.29 | 0.89 | 0.11 | 0.16 | 0.03 | 0.10 |
  // Laplacian            : 0.08 | 0.53 | 0.03 | 0.04 | 0.03 | 0.01 |
  // Homogeneous elas     : 0.99 | 3.35 | 0.59 | 0.73 | 0.03 | 0.23 |
  // Non-homogeneous elast: 1.00 | 9.08 | 0.59 | 0.73 | 0.03 | 0.24 |
  if (all || only_one == 5) // ndofu = 151959 ndofp =  50653 ndofchi = 6553
    test_new_assembly(3, 9, 4);
  // Vector source term   : 0.08 | 0.19 |
  // Nonlinear residual   : 0.16 |      |
  // Mass (scalar)        : 0.51 | 0.34 | 0.09 | 0.16 | 0.01 | 0.34 |
  // Mass (vector)        : 1.29 | 1.31 | 0.23 | 0.41 | 0.01 | 0.87 |
  // Laplacian            : 0.36 | 0.76 | 0.09 | 0.14 | 0.01 | 0.21 |
  // Homogeneous elas     : 2.74 | 5.23 | 0.82 | 1.41 | 0.01 | 1.32 |
  // Non-homogeneous elast: 2.66 | 47.4 | 0.82 | 1.41 | 0.01 | 1.24 |

  // Conclusions :
  // - Deactivation of debug test has no sensible effect.
  // - Compile time of assembly strings is negligible (< 0.0004)
  // - (J, K, B) computation takes half the computational time of the exec part
  // - The call itself of optimized instruction virtual functions is negligible
  //   It means that a real compilation (g++) avoiding them is not necessary
  //   and would be far more expensive in compilation time.
  // - For uniform mesh_fem, the resize operations has been suppressed and
  //   the "update pfp" has been isolated in a set  of instruction being
  //   executed only on change of integration method.
  // - The mass matrix is more expansive due to a larger number of Gauss points.
  // - Loop unrolling may have an important impact, especially for high degree 


  // Remaining possible optimizations
  // - Computations in geotrans_interpolation_context (J, K, B) can be
  //   transformed into some optimized instruction specialized with respect
  //   to the dimension.
  // - Optimization of the non-linear terms (mainly loops)

  // Original table (r5370) :
#if 0
  //                             |      | after| Gain |
  //                        new  | old  |  opt |factor|
  test_new_assembly(2, 400, 1);
  // Vector source term   : 0.76 | 0.77 | 0.19 | 4.00 |
  // Nonlinear residual   : 1.03 |      | 0.26 | 3.96 |
  // Mass (scalar)        : 0.80 | 0.64 | 0.18 | 4.44 |
  // Mass (vector)        : 0.94 | 0.91 | 0.27 | 3.48 |
  // Laplacian            : 0.55 | 0.88 | 0.15 | 3.66 |
  // Homogeneous elas     : 0.95 | 2.02 | 0.30 | 3.16 |
  // Non-homogeneous elast: 1.16 | 2.41 | 0.34 | 3.41 |
  test_new_assembly(3, 36, 1);
  // Vector source term   : 0.99 | 1.26 | 0.22 | 4.50 |
  // Nonlinear residual   : 2.82 |      | 0.40 | 7.05 |
  // Mass (scalar)        : 0.92 | 0.97 | 0.21 | 4.38 |
  // Mass (vector)        : 1.70 | 1.80 | 0.36 | 4.72 |
  // Laplacian            : 0.98 | 1.54 | 0.17 | 5.76 |
  // Homogeneous elas     : 2.48 | 5.09 | 0.59 | 4.20 |
  // Non-homogeneous elast: 2.72 | 7.10 | 0.63 | 4.31 |
  test_new_assembly(2, 200, 2);
  // Vector source term   : 0.33 | 0.26 | 0.08 | 4.12 |
  // Nonlinear residual   : 0.47 |      | 0.11 | 4.27 |
  // Mass (scalar)        : 0.35 | 0.29 | 0.08 | 4.37 |
  // Mass (vector)        : 0.57 | 0.54 | 0.15 | 3.80 |
  // Laplacian            : 0.28 | 0.42 | 0.07 | 4.00 |
  // Homogeneous elas     : 0.74 | 1.42 | 0.22 | 3.36 |
  // Non-homogeneous elast: 0.89 | 2.56 | 0.24 | 3.71 |
  test_new_assembly(3, 18, 2);
  // Vector source term   : 0.49 | 0.28 | 0.09 | 5.44 |
  // Nonlinear residual   : 1.30 |      | 0.20 | 6.50 |
  // Mass (scalar)        : 0.51 | 0.37 | 0.11 | 4.64 |
  // Mass (vector)        : 2.31 | 1.09 | 0.29 | 7.96 |
  // Laplacian            : 0.38 | 0.65 | 0.08 | 4.75 |
  // Homogeneous elas     : 3.35 | 4.13 | 0.99 | 3.38 |
  // Non-homogeneous elast: 3.48 | 10.2 | 1.00 | 3.48 |
  test_new_assembly(3, 9, 4);
  // Vector source term   : 0.40 | 0.20 | 0.08 | 5.00 |
  // Nonlinear residual   : 0.93 |      | 0.16 | 5.81 |
  // Mass (scalar)        : 0.79 | 0.47 | 0.51 | 1.55 |
  // Mass (vector)        : 7.11 | 1.59 | 1.29 | 5.51 |
  // Laplacian            : 0.96 | 0.91 | 0.36 | 2.66 |
  // Homogeneous elas     : 13.4 | 6.61 | 2.74 | 4.89 |
  // Non-homogeneous elast: 13.7 | 49.1 | 2.66 | 5.15 |
#endif

  return 0; 
}