1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
/*===========================================================================
Copyright (C) 2007-2017 Yves Renard, Julien Pommier.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include "getfem/getfem_assembling.h"
#include "getfem/getfem_generic_assembly.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_partial_mesh_fem.h"
#include "getfem/getfem_mat_elem.h"
#include "gmm/gmm.h"
#ifdef GETFEM_HAVE_SYS_TIMES
# include <sys/times.h>
#endif
#ifndef _MSC_VER
#include <unistd.h>
#endif
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
using std::flush;
using bgeot::base_vector;
using bgeot::base_matrix;
using bgeot::base_small_vector;
using bgeot::base_node;
using bgeot::scalar_type;
using bgeot::size_type;
using bgeot::short_type;
using bgeot::dim_type;
typedef gmm::wsvector<scalar_type> sparse_vector_type;
typedef gmm::row_matrix<sparse_vector_type> sparse_matrix_type;
typedef std::vector<scalar_type> linalg_vector;
#ifdef HAVE_SYS_TIMES
struct chrono {
struct ::tms t;
::clock_t t_elapsed;
float cpu_, elapsed_, system_;
float nbclocktk;
public:
chrono() { nbclocktk = ::sysconf(_SC_CLK_TCK); }
void init() { elapsed_=0; cpu_=0; system_ =0; }
void tic() { t_elapsed = ::times(&t); }
void toc() {
struct tms t2; ::clock_t t2_elapsed = ::times(&t2);
elapsed_ += (t2_elapsed - t_elapsed) / nbclocktk;
cpu_ += (t2.tms_utime - t.tms_utime) / nbclocktk;
system_ += (t2.tms_stime - t.tms_stime) / nbclocktk;
memcpy(&t, &t2, sizeof(struct tms));
}
float cpu() const { return cpu_; }
float elapsed() const { return elapsed_; }
float system() const { return system_; }
};
#else
struct chrono {
float t,cpu_;
public:
chrono() { }
void init() { cpu_=0; }
void tic() { t = float(::clock())/float(CLOCKS_PER_SEC); }
void toc() {
float t2 = float(::clock())/float(CLOCKS_PER_SEC);
cpu_ += t2 - t; t = t2;
}
float cpu() const { return cpu_; }
float elapsed() const { return cpu_; }
float system() const { return 0.; }
};
#endif
std::ostream& operator<<(std::ostream& o, const chrono& c) {
o << "[elapsed=" << int(c.elapsed()*1000) << "ms, cpu="
<< int(c.cpu()*1000) << "ms, system=" << int(c.system()*1000) << "ms]";
return o;
}
namespace getfem { // old assembly procedures with low level generic assembly
/*
assembly of a matrix with 1 parameter (real or complex)
(the most common here for the assembly routines below)
*/
template <typename MAT, typename VECT>
void old_asm_real_or_complex_1_param
(MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data,
const VECT &A, const mesh_region &rg, const char *assembly_description,
const mesh_fem *mf_mult = 0) {
old_asm_real_or_complex_1_param_
(M, mim, mf_u, mf_data, A, rg, assembly_description, mf_mult,
typename gmm::linalg_traits<VECT>::value_type());
}
/* real version */
template<typename MAT, typename VECT, typename T>
void old_asm_real_or_complex_1_param_
(const MAT &M, const mesh_im &mim, const mesh_fem &mf_u,
const mesh_fem &mf_data, const VECT &A, const mesh_region &rg,
const char *assembly_description, const mesh_fem *mf_mult, T) {
generic_assembly assem(assembly_description);
assem.push_mi(mim);
assem.push_mf(mf_u);
assem.push_mf(mf_data);
if (mf_mult) assem.push_mf(*mf_mult);
assem.push_data(A);
assem.push_mat_or_vec(const_cast<MAT&>(M));
assem.assembly(rg);
}
/* complex version */
template<typename MAT, typename VECT, typename T>
void old_asm_real_or_complex_1_param_
(MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data,
const VECT &A, const mesh_region &rg,const char *assembly_description,
const mesh_fem *mf_mult, std::complex<T>) {
old_asm_real_or_complex_1_param_(gmm::real_part(M),mim,mf_u,mf_data,
gmm::real_part(A),rg,
assembly_description, mf_mult, T());
old_asm_real_or_complex_1_param_(gmm::imag_part(M),mim,mf_u,mf_data,
gmm::imag_part(A),rg,
assembly_description, mf_mult, T());
}
template<typename VECT1, typename VECT2>
void old_asm_source_term
(const VECT1 &B, const mesh_im &mim, const mesh_fem &mf,
const mesh_fem &mf_data, const VECT2 &F,
const mesh_region &rg = mesh_region::all_convexes()) {
GMM_ASSERT1(mf_data.get_qdim() == 1 ||
mf_data.get_qdim() == mf.get_qdim(),
"invalid data mesh fem (same Qdim or Qdim=1 required)");
const char *st;
if (mf.get_qdim() == 1)
st = "F=data(#2); V(#1)+=comp(Base(#1).Base(#2))(:,j).F(j);";
else if (mf_data.get_qdim() == 1)
st = "F=data(qdim(#1),#2);"
"V(#1)+=comp(vBase(#1).Base(#2))(:,i,j).F(i,j);";
else
st = "F=data(#2);"
"V(#1)+=comp(vBase(#1).vBase(#2))(:,i,j,i).F(j);";
old_asm_real_or_complex_1_param(const_cast<VECT1 &>(B),mim,mf,
mf_data,F,rg,st);
}
template<typename VECT1, typename VECT2>
void old_asm_normal_source_term(VECT1 &B, const mesh_im &mim,
const mesh_fem &mf,
const mesh_fem &mf_data, const VECT2 &F,
const mesh_region &rg) {
GMM_ASSERT1(mf_data.get_qdim() == 1 ||
mf_data.get_qdim() == mf.get_qdim(),
"invalid data mesh_fem (same Qdim or Qdim=1 required)");
const char *st;
if (mf.get_qdim() == 1)
st = "F=data(mdim(#1),#2);"
"V(#1)+=comp(Base(#1).Base(#2).Normal())(:,j,k).F(k,j);";
else if (mf_data.get_qdim() == 1)
st = "F=data(qdim(#1),mdim(#1),#2);"
"V(#1)+=comp(vBase(#1).Base(#2).Normal())(:,i,j,k).F(i,k,j);";
else
st = "F=data(mdim(#1),#2);"
"V(#1)+=comp(vBase(#1).vBase(#2).Normal())(:,i,j,i,k).F(k,j);";
old_asm_real_or_complex_1_param(B, mim, mf, mf_data, F, rg, st);
}
template<typename MAT>
void old_asm_mass_matrix(const MAT &M, const mesh_im &mim,
const mesh_fem &mf_u1,
const mesh_region &rg = mesh_region::all_convexes()) {
generic_assembly assem;
if (mf_u1.get_qdim() == 1)
assem.set("M(#1,#1)+=sym(comp(Base(#1).Base(#1)))");
else
assem.set("M(#1,#1)+=sym(comp(vBase(#1).vBase(#1))(:,i,:,i));");
assem.push_mi(mim);
assem.push_mf(mf_u1);
assem.push_mat(const_cast<MAT &>(M));
assem.assembly(rg);
}
template<typename MAT>
void old_asm_mass_matrix(const MAT &M, const mesh_im &mim, const mesh_fem &mf_u1,
const mesh_fem &mf_u2,
const mesh_region &rg = mesh_region::all_convexes()) {
generic_assembly assem;
if (mf_u1.get_qdim() == 1 && mf_u2.get_qdim() == 1)
assem.set("M(#1,#2)+=comp(Base(#1).Base(#2))");
else if (mf_u1.get_qdim() == 1)
assem.set("M(#1,#2)+=comp(Base(#1).vBase(#2))(:,:,1);"); // could be i in place of 1
else if (mf_u2.get_qdim() == 1)
assem.set("M(#1,#2)+=comp(vBase(#1).Base(#2))(:,1,:);");
else
assem.set("M(#1,#2)+=comp(vBase(#1).vBase(#2))(:,i,:,i);");
assem.push_mi(mim);
assem.push_mf(mf_u1);
assem.push_mf(mf_u2);
assem.push_mat(const_cast<MAT &>(M));
assem.assembly(rg);
}
/**
Stiffness matrix for linear elasticity, with Lam coefficients
@ingroup asm
*/
template<class MAT, class VECT>
void old_asm_stiffness_matrix_for_linear_elasticity
(const MAT &RM_, const mesh_im &mim, const mesh_fem &mf,
const mesh_fem &mf_data, const VECT &LAMBDA, const VECT &MU,
const mesh_region &rg = mesh_region::all_convexes()) {
MAT &RM = const_cast<MAT &>(RM_);
GMM_ASSERT1(mf_data.get_qdim() == 1,
"invalid data mesh fem (Qdim=1 required)");
GMM_ASSERT1(mf.get_qdim() == mf.linked_mesh().dim(),
"wrong qdim for the mesh_fem");
/* e = strain tensor,
M = 2*mu*e(u):e(v) + lambda*tr(e(u))*tr(e(v))
*/
generic_assembly assem("lambda=data$1(#2); mu=data$2(#2);"
"t=comp(vGrad(#1).vGrad(#1).Base(#2));"
//"e=(t{:,2,3,:,5,6,:}+t{:,3,2,:,5,6,:}"
//"+t{:,2,3,:,6,5,:}+t{:,3,2,:,6,5,:})/4;"
//"e=(t{:,2,3,:,5,6,:}+t{:,3,2,:,5,6,:})*0.5;"
/*"M(#1,#1)+= sym(2*e(:,i,j,:,i,j,k).mu(k)"
" + e(:,i,i,:,j,j,k).lambda(k))");*/
"M(#1,#1)+= sym(t(:,i,j,:,i,j,k).mu(k)"
"+ t(:,j,i,:,i,j,k).mu(k)"
"+ t(:,i,i,:,j,j,k).lambda(k))");
assem.push_mi(mim);
assem.push_mf(mf);
assem.push_mf(mf_data);
assem.push_data(LAMBDA);
assem.push_data(MU);
assem.push_mat(RM);
assem.assembly(rg);
}
/**
Stiffness matrix for linear elasticity, with constant Lam coefficients
@ingroup asm
*/
template<class MAT, class VECT>
void old_asm_stiffness_matrix_for_homogeneous_linear_elasticity
(const MAT &RM_, const mesh_im &mim, const mesh_fem &mf,
const VECT &LAMBDA, const VECT &MU,
const mesh_region &rg = mesh_region::all_convexes()) {
MAT &RM = const_cast<MAT &>(RM_);
GMM_ASSERT1(mf.get_qdim() == mf.linked_mesh().dim(),
"wrong qdim for the mesh_fem");
generic_assembly assem("lambda=data$1(1); mu=data$2(1);"
"t=comp(vGrad(#1).vGrad(#1));"
"M(#1,#1)+= sym(t(:,i,j,:,i,j).mu(1)"
"+ t(:,j,i,:,i,j).mu(1)"
"+ t(:,i,i,:,j,j).lambda(1))");
assem.push_mi(mim);
assem.push_mf(mf);
assem.push_data(LAMBDA);
assem.push_data(MU);
assem.push_mat(RM);
assem.assembly(rg);
}
template<typename MAT>
void old_asm_stiffness_matrix_for_homogeneous_laplacian
(const MAT &M_, const mesh_im &mim, const mesh_fem &mf,
const mesh_region &rg = mesh_region::all_convexes()) {
MAT &M = const_cast<MAT &>(M_);
generic_assembly
assem("M$1(#1,#1)+=sym(comp(Grad(#1).Grad(#1))(:,i,:,i))");
assem.push_mi(mim);
assem.push_mf(mf);
assem.push_mat(M);
assem.assembly(rg);
}
}
#define VEC_TEST_1(title, ndof, expr, mim_, region, I_, old_asm) \
cout << "\n" << title << endl; \
ch.init(); ch.tic(); workspace.clear_expressions(); \
workspace.add_expression(expr, mim_, region); \
workspace.assembly(1); ch.toc(); \
cout << "Elapsed time for new assembly " << ch.elapsed() << endl; \
getfem::base_vector V(ndof), V2(ndof); \
ch.init(); ch.tic(); old_asm; ch.toc(); \
gmm::copy(V, V2); \
cout << "Elapsed time for old assembly " << ch.elapsed() << endl; \
gmm::add(gmm::scaled(gmm::sub_vector(workspace.assembled_vector(), \
I_), scalar_type(-1)), V); \
scalar_type norm_error = gmm::vect_norminf(V); \
cout << "Error : " << norm_error << endl;
#define VEC_TEST_2(ndof, expr, mim_, region, I_) \
ch.init(); ch.tic(); workspace.clear_expressions(); \
workspace.add_expression(expr, mim_, region); \
workspace.assembly(1); ch.toc(); \
cout << "Elapsed time for new assembly, alternative expression " \
<< ch.elapsed() << endl; \
gmm::copy(V2, V); \
gmm::add(gmm::scaled(gmm::sub_vector(workspace.assembled_vector(), \
I_), scalar_type(-1)), V); \
scalar_type norm_error = gmm::vect_norminf(V); \
cout << "Error : " << norm_error << endl;
#define VEC_TEST_3(title, ndof, expr, mim_, region) \
cout << "\n" << title << endl; \
ch.init(); ch.tic(); workspace.clear_expressions(); \
workspace.add_expression(expr, mim_, region); \
workspace.assembly(1); ch.toc(); \
cout << "Elapsed time for new assembly " << ch.elapsed() << endl;
#define MAT_TEST_1(title, ndof1, ndof2, expr, mim_, I1_, I2_, old_asm) \
cout << "\n" << title << endl; \
getfem::model_real_sparse_matrix K(ndof1, ndof2), K2(ndof1, ndof2); \
getfem::model_real_sparse_matrix K3(I1_.last()+1, I2_.last()+1); \
ch.init(); ch.tic(); workspace.clear_expressions(); \
workspace.set_assembled_matrix(K3); \
workspace.add_expression(expr, mim_); \
workspace.assembly(2); ch.toc(); \
cout << "Elapsed time for new assembly " << ch.elapsed() << endl; \
ch.init(); ch.tic(); old_asm; ch.toc(); \
gmm::copy(K, K2); \
cout << "Elapsed time for old assembly " << ch.elapsed() << endl; \
gmm::add(gmm::scaled(gmm::sub_matrix(K3,I1_, I2_), \
scalar_type(-1)), K); \
scalar_type norm_error = gmm::mat_norminf(K); \
cout << "Error : " << norm_error << endl;
#define MAT_TEST_2(nbdof1, nbdof2, expr, mim_, I1_, I2_) \
gmm::clear(K3); \
ch.init(); ch.tic(); workspace.clear_expressions(); \
workspace.add_expression(expr, mim_); \
workspace.assembly(2); ch.toc(); \
cout << "Elapsed time for new assembly, alternative expression " \
<< ch.elapsed() << endl; \
gmm::copy(K2, K); \
gmm::add(gmm::scaled(gmm::sub_matrix(K3, I1_, I1_), \
scalar_type(-1)), K); \
norm_error = gmm::mat_norminf(K); \
cout << "Error : " << norm_error << endl;
static void test_new_assembly(int N, int NX, int pK) {
cout << "\n\n-------------------------------------\n"
<< "Tests in dimension " << N << " with P" << pK << " elements"
<< "\n-------------------------------------"
<< endl << endl;
getfem::ga_workspace workspace;
base_vector a(1); a[0] = 3.0;
workspace.add_fixed_size_constant("a", a);
base_vector b(2); b[0] = 3.0; b[1] = 6.0;
workspace.add_fixed_size_constant("b", b);
// base_vector c(1); c[0] = 1.0;
// workspace.add_fixed_size_variable("c", gmm::sub_interval(0, 1), c);
getfem::mesh m;
char Ns[5]; sprintf(Ns, "%d", N);
char Ks[5]; sprintf(Ks, "%d", pK);
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor
((std::string("GT_PK(") + Ns + ",1)").c_str());
std::vector<size_type> nsubdiv(N, NX);
getfem::regular_unit_mesh(m, nsubdiv, pgt);
const size_type NEUMANN_BOUNDARY_NUM = 1;
const size_type DIRICHLET_BOUNDARY_NUM = 2;
base_small_vector Dir(N); Dir[N-1] = 1.0;
getfem::mesh_region border_faces = getfem::outer_faces_of_mesh(m);
getfem::mesh_region Neumann_faces
= getfem::select_faces_of_normal(m, border_faces, Dir, 0.1);
m.region(NEUMANN_BOUNDARY_NUM) = Neumann_faces;
m.region(DIRICHLET_BOUNDARY_NUM)
= getfem::mesh_region::subtract(border_faces, Neumann_faces);
getfem::mesh_fem mf_u(m);
getfem::pfem pf_u = getfem::fem_descriptor
((std::string("FEM_PK(") + Ns + "," + Ks + ")").c_str());
mf_u.set_finite_element(m.convex_index(), pf_u);
mf_u.set_qdim(dim_type(N));
getfem::mesh_fem mf_p(m);
getfem::pfem pf_p = getfem::fem_descriptor
((std::string("FEM_PK(") + Ns + "," + Ks + ")").c_str());
mf_p.set_finite_element(m.convex_index(), pf_p);
getfem::mesh_im mim(m);
mim.set_integration_method(m.convex_index(), dim_type(2*pK));
getfem::mesh_im mim2(m);
mim2.set_integration_method(m.convex_index(), dim_type(2*pK-2));
std::vector<scalar_type> U(mf_u.nb_dof());
gmm::fill_random(U);
std::vector<scalar_type> A(mf_u.nb_dof()*N);
gmm::fill_random(A);
std::vector<scalar_type> P(mf_p.nb_dof());
gmm::fill_random(P);
size_type ndofu = mf_u.nb_dof(), ndofp = mf_p.nb_dof();
cout << "ndofu = " << ndofu << " ndofp = " << ndofp;
gmm::sub_interval Iu(0, ndofu);
gmm::sub_interval Ip(ndofu, ndofp);
workspace.add_fem_variable("u", mf_u, Iu, U);
workspace.add_fem_constant("A", mf_u, A);
workspace.add_fem_variable("p", mf_p, Ip, P);
getfem::partial_mesh_fem mf_chi(mf_p);
dal::bit_vector kept_dof
= mf_p.basic_dof_on_region(DIRICHLET_BOUNDARY_NUM);
mf_chi.adapt(kept_dof);
size_type ndofchi = mf_chi.nb_dof();
cout << " ndofchi = " << ndofchi << endl;
std::vector<scalar_type> chi(ndofchi);
gmm::fill_random(chi);
gmm::sub_interval Ichi(ndofu+ndofp, ndofchi);
workspace.add_fem_variable("chi", mf_chi, Ichi, chi);
chrono ch;
bool all = false;
bool select = true;
int only_one = 6;
if (all || select || only_one == 1) {
VEC_TEST_1("Test for source term", ndofu, "u.Test_u", mim, size_type(-1),
Iu, getfem::old_asm_source_term(V, mim, mf_u, mf_u, U));
}
if (all || select || only_one == 2) {
VEC_TEST_3("Test for nonlinear residual", ndofu, "Det(Grad_u)", mim,
size_type(-1));
}
if (all || only_one == 3) {
{VEC_TEST_1("Test for Neumann term", ndofu, "u.Test_u",
mim, NEUMANN_BOUNDARY_NUM,
Iu, getfem::old_asm_source_term(V, mim, mf_u, mf_u,
U, NEUMANN_BOUNDARY_NUM));}
{VEC_TEST_1("Test for Neumann term", ndofu,
"(((Reshape(A,meshdim,meshdim))')*Normal).Test_u",
mim, NEUMANN_BOUNDARY_NUM,
Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
A, NEUMANN_BOUNDARY_NUM));}
if (N == 2)
{VEC_TEST_1("Test for Neumann term", ndofu,
"(A'*Normal).Test_u", mim,
NEUMANN_BOUNDARY_NUM,
Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
A, NEUMANN_BOUNDARY_NUM));}
if (N == 3)
{VEC_TEST_1("Test for Neumann term", ndofu,
"(A'*Normal).Test_u", mim, NEUMANN_BOUNDARY_NUM,
Iu, getfem::old_asm_normal_source_term(V, mim, mf_u, mf_u,
A, NEUMANN_BOUNDARY_NUM));}
}
if (all || only_one == 4) {
{VEC_TEST_1("Test for Neumann term with reduced fem", ndofchi,
"p*Test_chi", mim, DIRICHLET_BOUNDARY_NUM,
Ichi, getfem::old_asm_source_term(V, mim, mf_chi, mf_p,
P, DIRICHLET_BOUNDARY_NUM));}
}
if (all || select || only_one == 5) {
MAT_TEST_1("Test for scalar Mass matrix", ndofp, ndofp, "Test_p.Test2_p",
mim, Ip, Ip, getfem::old_asm_mass_matrix(K, mim, mf_p));
}
// if (all || select || only_one == 6) {
// std::vector<scalar_type> Ca(mf_p.nb_dof());
// gmm::fill_random(Ca);
// workspace.add_fem_constant("Ca", mf_p, Ca);
// MAT_TEST_1("Test for vector Mass matrix", ndofu, ndofu,
// "(Ca*Test_u).Test2_u",
// mim, Iu, Iu,
// getfem::old_asm_mass_matrix_param(K, mim, mf_u, mf_p, Ca));
// }
if (all || select || only_one == 6) {
MAT_TEST_1("Test for vector Mass matrix", ndofu, ndofu, "(Test_u).Test2_u",
mim, Iu, Iu, getfem::old_asm_mass_matrix(K, mim, mf_u));
}
if (all || select || only_one == 7) {
MAT_TEST_1("Test for Laplacian stiffness matrix", ndofp, ndofp,
"Grad_Test_p:Grad_Test2_p", mim2, Ip, Ip,
getfem::old_asm_stiffness_matrix_for_homogeneous_laplacian
(K, mim2, mf_p));
// MAT_TEST_2(ndofp, ndofp, "(Grad_p:Grad_p)/2", mim2, Ip, Ip);
// MAT_TEST_2(ndofp, ndofp, "sqr(Norm(Grad_p))/2", mim2, Ip, Ip);
if (all) {
MAT_TEST_2(ndofp, ndofp, "Norm_sqr(Grad_p)/2", mim2, Ip, Ip);
}
if (all && N == 2) {
MAT_TEST_2(ndofp, ndofp,
"(sqr(Grad_p(1)) + sqr(Grad_p(2)))/2", mim2, Ip, Ip);
MAT_TEST_2(ndofp, ndofp,
"(Grad_p(1)*Grad_p(1) + Grad_p(2)*Grad_p(2))/2",
mim2, Ip, Ip);
MAT_TEST_2(ndofp, ndofp,
"([Grad_p(2); Grad_p(1)].[Grad_p(2); Grad_p(1)])/2",
mim2, Ip, Ip);
MAT_TEST_2(ndofp, ndofp, "sqr(Norm([Grad_p(2); Grad_p(1)]))/2",
mim2, Ip, Ip);
}
if (all && N == 3) {
MAT_TEST_2(ndofp, ndofp,
"(sqr(Grad_p(1)) + sqr(Grad_p(2)) + sqr(Grad_p(3)))/2",
mim2, Ip, Ip);
MAT_TEST_2(ndofp, ndofp,
"(Grad_p(1)*Grad_p(1) + Grad_p(2)*Grad_p(2)"
"+ Grad_p(3)*Grad_p(3))/2", mim2, Ip, Ip);
MAT_TEST_2(ndofp, ndofp,
"([Grad_p(1); Grad_p(3); Grad_p(2)]."
"[Grad_p(1); Grad_p(3); Grad_p(2)])/2",
mim2, Ip, Ip);
}
}
if (all || select || only_one == 8) {
base_vector lambda(1); lambda[0] = 3.0;
workspace.add_fixed_size_constant("lambda", lambda);
base_vector mu(1); mu[0] = 2.0;
workspace.add_fixed_size_constant("mu", mu);
MAT_TEST_1("Test for linear homogeneous elasticity stiffness matrix",
ndofu, ndofu, "(Div_Test_u*(lambda*Id(qdim(u))) "
"+ (2*mu)*Sym(Grad_Test_u)):Grad_Test2_u", mim2,
Iu, Iu,
getfem::old_asm_stiffness_matrix_for_homogeneous_linear_elasticity
(K, mim2, mf_u, lambda, mu));
if (all) {
MAT_TEST_2(ndofu, ndofu, "lambda*Div_Test_u*Div_Test2_u "
"+ mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u", mim2, Iu, Iu);
}
// MAT_TEST_2(ndofu, ndofu,
// "lambda*((Grad_Test2_u@Grad_Test_u):Id(meshdim))"
// ":Id(meshdim) + mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
// mim2, Iu, Iu);
// MAT_TEST_2(ndofu, ndofu,
// "lambda*Id(meshdim)@Id(meshdim)*Grad_Test_u"
// ":Grad_Test2_u + mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
// mim2, Iu, Iu);
// MAT_TEST_2(ndofu, ndofu,
// "lambda*(Id(meshdim)*Id(meshdim))@Id(meshdim)"
// "*Grad_Test_u:Grad_Test2_u"
// "+ mu*(Grad_Test_u'+Grad_Test_u):Grad_Test2_u",
// mim2, Iu, Iu);
if (N == 2 && all) {
MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
"+mu*(Grad_Test_u'(:,1)"
"+Grad_Test_u(:,1)):Grad_Test2_u(:,1)"
"+mu*(Grad_Test_u'(:,2)"
"+Grad_Test_u(:,2)):Grad_Test2_u(:,2) ", mim2, Iu, Iu);
MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
"+mu*(Grad_Test_u'(1,:)"
"+Grad_Test_u(1,:)):Grad_Test2_u(1,:)"
"+mu*(Grad_Test_u'(2,:)"
"+Grad_Test_u(2,:)):Grad_Test2_u(2,:) ", mim2, Iu, Iu);
}
if (N == 3 && all) {
MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
"+mu*(Grad_Test_u'(:,1)"
"+Grad_Test_u(:,1)):Grad_Test2_u(:,1)"
"+mu*(Grad_Test_u'(:,2)"
"+Grad_Test_u(:,2)):Grad_Test2_u(:,2)"
"+mu*(Grad_Test_u'(:,3)"
"+Grad_Test_u(:,3)):Grad_Test2_u(:,3) ", mim2, Iu, Iu);
MAT_TEST_2(ndofu,ndofu,"lambda*Trace(Grad_Test_u)*Trace(Grad_Test2_u) "
"+ mu*(Grad_Test_u'(1,:)"
"+Grad_Test_u(1,:)):Grad_Test2_u(1,:)"
"+ mu*(Grad_Test_u'(2,:)"
"+Grad_Test_u(2,:)):Grad_Test2_u(2,:)"
"+mu*(Grad_Test_u'(3,:)"
"+Grad_Test_u(3,:)):Grad_Test2_u(3,:) ", mim2, Iu, Iu);
}
}
if (all || select || only_one == 9) {
base_vector lambda2(ndofp, 3.0);
workspace.add_fem_constant("lambda2", mf_p, lambda2);
base_vector mu2(ndofp, 2.0);
workspace.add_fem_constant("mu2", mf_p, mu2);
MAT_TEST_1("Test for linear non homogeneous elasticity stiffness matrix",
ndofu, ndofu, "(Div_Test_u*(lambda2*Id(meshdim)) "
"+ (2*mu2)*Sym(Grad_Test_u)):Grad_Test2_u",
mim2, Iu, Iu,
getfem::old_asm_stiffness_matrix_for_linear_elasticity
(K, mim2, mf_u, mf_p, lambda2, mu2));
}
}
int main(int /* argc */, char * /* argv */[]) {
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
bool all = true;
int only_one = 5;
// Mesured times for
// - new assembly,
// - old one,
// - estimate of the storage in sparse matrices part for the new assembly,
// - global assembly part (assembly instruction),
// - ga_exec cost (instructions not executed, includes the compilation and
// workspace initialization),
// - J computation.
// - Instructions execution except for assembly ones
// new | old | sto | asse | exec | Ins |
if (all || only_one == 1) // ndofu = 321602 ndofp = 160801 ndofchi = 1201
test_new_assembly(2, 400, 1);
// Vector source term : 0.19 | 0.66 |
// Nonlinear residual : 0.26 | |
// Mass (scalar) : 0.18 | 0.56 | 0.04 | 0.06 | 0.06 | 0.06 |
// Mass (vector) : 0.27 | 0.80 | 0.08 | 0.11 | 0.06 | 0.09 |
// Laplacian : 0.15 | 0.80 | 0.04 | 0.05 | 0.06 | 0.04 |
// Homogeneous elas : 0.30 | 1.88 | 0.08 | 0.14 | 0.06 | 0.10 |
// Non-homogeneous elast: 0.34 | 2.26 | 0.09 | 0.15 | 0.06 | 0.13 |
if (all || only_one == 2) // ndofu = 151959 ndofp = 50653 ndofchi = 6553
test_new_assembly(3, 36, 1);
// Vector source term : 0.22 | 0.79 |
// Nonlinear residual : 0.40 | |
// Mass (scalar) : 0.21 | 0.58 | 0.05 | 0.09 | 0.08 | 0.05 |
// Mass (vector) : 0.36 | 1.37 | 0.12 | 0.17 | 0.08 | 0.11 |
// Laplacian : 0.17 | 1.13 | 0.03 | 0.06 | 0.08 | 0.03 |
// Homogeneous elas : 0.59 | 4.25 | 0.26 | 0.33 | 0.08 | 0.18 |
// Non-homogeneous elast: 0.63 | 6.29 | 0.26 | 0.33 | 0.08 | 0.22 |
if (all || only_one == 3) // ndofu = 321602 ndofp = 160801 ndofchi = 1201
test_new_assembly(2, 200, 2);
// Vector source term : 0.08 | 0.23 |
// Nonlinear residual : 0.11 | |
// Mass (scalar) : 0.08 | 0.25 | 0.02 | 0.03 | 0.03 | 0.02 |
// Mass (vector) : 0.15 | 0.44 | 0.05 | 0.07 | 0.03 | 0.05 |
// Laplacian : 0.07 | 0.37 | 0.02 | 0.03 | 0.03 | 0.01 |
// Homogeneous elas : 0.22 | 1.28 | 0.06 | 0.10 | 0.03 | 0.09 |
// Non-homogeneous elast: 0.24 | 2.38 | 0.06 | 0.10 | 0.03 | 0.11 |
if (all || only_one == 4) // ndofu = 151959 ndofp = 50653 ndofchi = 6553
test_new_assembly(3, 18, 2);
// Vector source term : 0.09 | 0.23 |
// Nonlinear residual : 0.20 | |
// Mass (scalar) : 0.11 | 0.25 | 0.05 | 0.05 | 0.03 | 0.03 |
// Mass (vector) : 0.29 | 0.89 | 0.11 | 0.16 | 0.03 | 0.10 |
// Laplacian : 0.08 | 0.53 | 0.03 | 0.04 | 0.03 | 0.01 |
// Homogeneous elas : 0.99 | 3.35 | 0.59 | 0.73 | 0.03 | 0.23 |
// Non-homogeneous elast: 1.00 | 9.08 | 0.59 | 0.73 | 0.03 | 0.24 |
if (all || only_one == 5) // ndofu = 151959 ndofp = 50653 ndofchi = 6553
test_new_assembly(3, 9, 4);
// Vector source term : 0.08 | 0.19 |
// Nonlinear residual : 0.16 | |
// Mass (scalar) : 0.51 | 0.34 | 0.09 | 0.16 | 0.01 | 0.34 |
// Mass (vector) : 1.29 | 1.31 | 0.23 | 0.41 | 0.01 | 0.87 |
// Laplacian : 0.36 | 0.76 | 0.09 | 0.14 | 0.01 | 0.21 |
// Homogeneous elas : 2.74 | 5.23 | 0.82 | 1.41 | 0.01 | 1.32 |
// Non-homogeneous elast: 2.66 | 47.4 | 0.82 | 1.41 | 0.01 | 1.24 |
// Conclusions :
// - Deactivation of debug test has no sensible effect.
// - Compile time of assembly strings is negligible (< 0.0004)
// - (J, K, B) computation takes half the computational time of the exec part
// - The call itself of optimized instruction virtual functions is negligible
// It means that a real compilation (g++) avoiding them is not necessary
// and would be far more expensive in compilation time.
// - For uniform mesh_fem, the resize operations has been suppressed and
// the "update pfp" has been isolated in a set of instruction being
// executed only on change of integration method.
// - The mass matrix is more expansive due to a larger number of Gauss points.
// - Loop unrolling may have an important impact, especially for high degree
// Remaining possible optimizations
// - Computations in geotrans_interpolation_context (J, K, B) can be
// transformed into some optimized instruction specialized with respect
// to the dimension.
// - Optimization of the non-linear terms (mainly loops)
// Original table (r5370) :
#if 0
// | | after| Gain |
// new | old | opt |factor|
test_new_assembly(2, 400, 1);
// Vector source term : 0.76 | 0.77 | 0.19 | 4.00 |
// Nonlinear residual : 1.03 | | 0.26 | 3.96 |
// Mass (scalar) : 0.80 | 0.64 | 0.18 | 4.44 |
// Mass (vector) : 0.94 | 0.91 | 0.27 | 3.48 |
// Laplacian : 0.55 | 0.88 | 0.15 | 3.66 |
// Homogeneous elas : 0.95 | 2.02 | 0.30 | 3.16 |
// Non-homogeneous elast: 1.16 | 2.41 | 0.34 | 3.41 |
test_new_assembly(3, 36, 1);
// Vector source term : 0.99 | 1.26 | 0.22 | 4.50 |
// Nonlinear residual : 2.82 | | 0.40 | 7.05 |
// Mass (scalar) : 0.92 | 0.97 | 0.21 | 4.38 |
// Mass (vector) : 1.70 | 1.80 | 0.36 | 4.72 |
// Laplacian : 0.98 | 1.54 | 0.17 | 5.76 |
// Homogeneous elas : 2.48 | 5.09 | 0.59 | 4.20 |
// Non-homogeneous elast: 2.72 | 7.10 | 0.63 | 4.31 |
test_new_assembly(2, 200, 2);
// Vector source term : 0.33 | 0.26 | 0.08 | 4.12 |
// Nonlinear residual : 0.47 | | 0.11 | 4.27 |
// Mass (scalar) : 0.35 | 0.29 | 0.08 | 4.37 |
// Mass (vector) : 0.57 | 0.54 | 0.15 | 3.80 |
// Laplacian : 0.28 | 0.42 | 0.07 | 4.00 |
// Homogeneous elas : 0.74 | 1.42 | 0.22 | 3.36 |
// Non-homogeneous elast: 0.89 | 2.56 | 0.24 | 3.71 |
test_new_assembly(3, 18, 2);
// Vector source term : 0.49 | 0.28 | 0.09 | 5.44 |
// Nonlinear residual : 1.30 | | 0.20 | 6.50 |
// Mass (scalar) : 0.51 | 0.37 | 0.11 | 4.64 |
// Mass (vector) : 2.31 | 1.09 | 0.29 | 7.96 |
// Laplacian : 0.38 | 0.65 | 0.08 | 4.75 |
// Homogeneous elas : 3.35 | 4.13 | 0.99 | 3.38 |
// Non-homogeneous elast: 3.48 | 10.2 | 1.00 | 3.48 |
test_new_assembly(3, 9, 4);
// Vector source term : 0.40 | 0.20 | 0.08 | 5.00 |
// Nonlinear residual : 0.93 | | 0.16 | 5.81 |
// Mass (scalar) : 0.79 | 0.47 | 0.51 | 1.55 |
// Mass (vector) : 7.11 | 1.59 | 1.29 | 5.51 |
// Laplacian : 0.96 | 0.91 | 0.36 | 2.66 |
// Homogeneous elas : 13.4 | 6.61 | 2.74 | 4.89 |
// Non-homogeneous elast: 13.7 | 49.1 | 2.66 | 5.15 |
#endif
return 0;
}
|