1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
#include "slu_cdefs.h"
extern void ctrsm_();
extern void cgemm_();
/*
* Function prototypes
*/
void cusolve(int, int, complex*, complex*);
void clsolve(int, int, complex*, complex*);
void cmatvec(int, int, int, complex*, complex*, complex*);
void
cgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,
int *perm_c, int *perm_r, SuperMatrix *B,
SuperLUStat_t *stat, int *info)
{
/*
* Purpose
* =======
*
* CGSTRS solves a system of linear equations A*X=B or A'*X=B
* with A sparse and B dense, using the LU factorization computed by
* CGSTRF.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* trans (input) trans_t
* Specifies the form of the system of equations:
* = NOTRANS: A * X = B (No transpose)
* = TRANS: A'* X = B (Transpose)
* = CONJ: A**H * X = B (Conjugate transpose)
*
* L (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU.
*
* U (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use column-wise storage scheme, i.e., U has types:
* Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU.
*
* perm_c (input) int*, dimension (L->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
*
* perm_r (input) int*, dimension (L->nrow)
* Row permutation vector, which defines the permutation matrix Pr;
* perm_r[i] = j means row i of A is in position j in Pr*A.
*
* B (input/output) SuperMatrix*
* B has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE.
* On entry, the right hand side matrix.
* On exit, the solution matrix if info = 0;
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if info = -i, the i-th argument had an illegal value
*
*/
#ifdef _CRAY
_fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif
int incx = 1, incy = 1;
#ifdef USE_VENDOR_BLAS
complex alpha = {1.0, 0.0}, beta = {1.0, 0.0};
complex *work_col;
#endif
complex temp_comp;
DNformat *Bstore;
complex *Bmat;
SCformat *Lstore;
NCformat *Ustore;
complex *Lval, *Uval;
int fsupc, nrow, nsupr, nsupc, luptr, istart, irow;
int i, j, k, iptr, jcol, n, ldb, nrhs;
complex *work, *rhs_work, *soln;
flops_t solve_ops;
void cprint_soln();
/* Test input parameters ... */
*info = 0;
Bstore = B->Store;
ldb = Bstore->lda;
nrhs = B->ncol;
if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
else if ( L->nrow != L->ncol || L->nrow < 0 ||
L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU )
*info = -2;
else if ( U->nrow != U->ncol || U->nrow < 0 ||
U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU )
*info = -3;
else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
*info = -6;
if ( *info ) {
i = -(*info);
xerbla_("cgstrs", &i);
return;
}
n = L->nrow;
work = complexCalloc(n * nrhs);
if ( !work ) ABORT("Malloc fails for local work[].");
soln = complexMalloc(n);
if ( !soln ) ABORT("Malloc fails for local soln[].");
Bmat = Bstore->nzval;
Lstore = L->Store;
Lval = Lstore->nzval;
Ustore = U->Store;
Uval = Ustore->nzval;
solve_ops = 0;
if ( trans == NOTRANS ) {
/* Permute right hand sides to form Pr*B */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
/* Forward solve PLy=Pb. */
for (k = 0; k <= Lstore->nsuper; k++) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
nrow = nsupr - nsupc;
solve_ops += 4 * nsupc * (nsupc - 1) * nrhs;
solve_ops += 8 * nrow * nsupc * nrhs;
if ( nsupc == 1 ) {
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
luptr = L_NZ_START(fsupc);
for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
irow = L_SUB(iptr);
++luptr;
cc_mult(&temp_comp, &rhs_work[fsupc], &Lval[luptr]);
c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
}
}
} else {
luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
ftcs1 = _cptofcd("L", strlen("L"));
ftcs2 = _cptofcd("N", strlen("N"));
ftcs3 = _cptofcd("U", strlen("U"));
CTRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
CGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha,
&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
&beta, &work[0], &n );
#else
ctrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
cgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha,
&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
&beta, &work[0], &n );
#endif
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
work_col = &work[j*n];
iptr = istart + nsupc;
for (i = 0; i < nrow; i++) {
irow = L_SUB(iptr);
c_sub(&rhs_work[irow], &rhs_work[irow], &work_col[i]);
work_col[i].r = 0.0;
work_col[i].i = 0.0;
iptr++;
}
}
#else
for (j = 0; j < nrhs; j++) {
rhs_work = &Bmat[j*ldb];
clsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
cmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
&rhs_work[fsupc], &work[0] );
iptr = istart + nsupc;
for (i = 0; i < nrow; i++) {
irow = L_SUB(iptr);
c_sub(&rhs_work[irow], &rhs_work[irow], &work[i]);
work[i].r = 0.;
work[i].i = 0.;
iptr++;
}
}
#endif
} /* else ... */
} /* for L-solve */
#ifdef DEBUG
printf("After L-solve: y=\n");
cprint_soln(n, nrhs, Bmat);
#endif
/*
* Back solve Ux=y.
*/
for (k = Lstore->nsuper; k >= 0; k--) {
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
nsupc = L_FST_SUPC(k+1) - fsupc;
luptr = L_NZ_START(fsupc);
solve_ops += 4 * nsupc * (nsupc + 1) * nrhs;
if ( nsupc == 1 ) {
rhs_work = &Bmat[0];
for (j = 0; j < nrhs; j++) {
c_div(&rhs_work[fsupc], &rhs_work[fsupc], &Lval[luptr]);
rhs_work += ldb;
}
} else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
ftcs1 = _cptofcd("L", strlen("L"));
ftcs2 = _cptofcd("U", strlen("U"));
ftcs3 = _cptofcd("N", strlen("N"));
CTRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
ctrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
&Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else
for (j = 0; j < nrhs; j++)
cusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif
}
for (j = 0; j < nrhs; ++j) {
rhs_work = &Bmat[j*ldb];
for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
solve_ops += 8*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
irow = U_SUB(i);
cc_mult(&temp_comp, &rhs_work[jcol], &Uval[i]);
c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
}
}
}
} /* for U-solve */
#ifdef DEBUG
printf("After U-solve: x=\n");
cprint_soln(n, nrhs, Bmat);
#endif
/* Compute the final solution X := Pc*X. */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
stat->ops[SOLVE] = solve_ops;
} else { /* Solve A'*X=B or CONJ(A)*X=B */
/* Permute right hand sides to form Pc'*B. */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
stat->ops[SOLVE] = 0;
if (trans == TRANS) {
for (k = 0; k < nrhs; ++k) {
/* Multiply by inv(U'). */
sp_ctrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
/* Multiply by inv(L'). */
sp_ctrsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);
}
} else { /* trans == CONJ */
for (k = 0; k < nrhs; ++k) {
/* Multiply by conj(inv(U')). */
sp_ctrsv("U", "C", "N", L, U, &Bmat[k*ldb], stat, info);
/* Multiply by conj(inv(L')). */
sp_ctrsv("L", "C", "U", L, U, &Bmat[k*ldb], stat, info);
}
}
/* Compute the final solution X := Pr'*X (=inv(Pr)*X) */
for (i = 0; i < nrhs; i++) {
rhs_work = &Bmat[i*ldb];
for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
for (k = 0; k < n; k++) rhs_work[k] = soln[k];
}
}
SUPERLU_FREE(work);
SUPERLU_FREE(soln);
}
/*
* Diagnostic print of the solution vector
*/
void
cprint_soln(int n, int nrhs, complex *soln)
{
int i;
for (i = 0; i < n; i++)
printf("\t%d: %.4f\n", i, soln[i].r);
}
|