File: cgstrs.c

package info (click to toggle)
getfem%2B%2B 5.3%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 35,604 kB
  • sloc: cpp: 117,991; ansic: 73,600; fortran: 16,046; python: 7,403; sh: 3,624; perl: 1,722; makefile: 1,548
file content (344 lines) | stat: -rw-r--r-- 10,062 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

/*
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 */
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required 
approvals from U.S. Dept. of Energy) 

All rights reserved. 

The source code is distributed under BSD license, see the file License.txt
*/


#include "slu_cdefs.h"
extern void ctrsm_();
extern void cgemm_();

/* 
 * Function prototypes 
 */
void cusolve(int, int, complex*, complex*);
void clsolve(int, int, complex*, complex*);
void cmatvec(int, int, int, complex*, complex*, complex*);


void
cgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,
        int *perm_c, int *perm_r, SuperMatrix *B,
        SuperLUStat_t *stat, int *info)
{
/*
 * Purpose
 * =======
 *
 * CGSTRS solves a system of linear equations A*X=B or A'*X=B
 * with A sparse and B dense, using the LU factorization computed by
 * CGSTRF.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         cgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         cgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU.
 *
 * perm_c  (input) int*, dimension (L->ncol)
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * perm_r  (input) int*, dimension (L->nrow)
 *         Row permutation vector, which defines the permutation matrix Pr; 
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *
 */
#ifdef _CRAY
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif
    int      incx = 1, incy = 1;
#ifdef USE_VENDOR_BLAS
    complex   alpha = {1.0, 0.0}, beta = {1.0, 0.0};
    complex   *work_col;
#endif
    complex   temp_comp;
    DNformat *Bstore;
    complex   *Bmat;
    SCformat *Lstore;
    NCformat *Ustore;
    complex   *Lval, *Uval;
    int      fsupc, nrow, nsupr, nsupc, luptr, istart, irow;
    int      i, j, k, iptr, jcol, n, ldb, nrhs;
    complex   *work, *rhs_work, *soln;
    flops_t  solve_ops;
    void cprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
	      L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU )
	*info = -2;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
	      U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU )
	*info = -3;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
	      B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info ) {
	i = -(*info);
	xerbla_("cgstrs", &i);
	return;
    }

    n = L->nrow;
    work = complexCalloc(n * nrhs);
    if ( !work ) ABORT("Malloc fails for local work[].");
    soln = complexMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/* Permute right hand sides to form Pr*B */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
	/* Forward solve PLy=Pb. */
	for (k = 0; k <= Lstore->nsuper; k++) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    nrow = nsupr - nsupc;

	    solve_ops += 4 * nsupc * (nsupc - 1) * nrhs;
	    solve_ops += 8 * nrow * nsupc * nrhs;
	    
	    if ( nsupc == 1 ) {
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
	    	    luptr = L_NZ_START(fsupc);
		    for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
			irow = L_SUB(iptr);
			++luptr;
			cc_mult(&temp_comp, &rhs_work[fsupc], &Lval[luptr]);
			c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
		    }
		}
	    } else {
	    	luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("N", strlen("N"));
		ftcs3 = _cptofcd("U", strlen("U"));
		CTRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		CGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#else
		ctrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		cgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#endif
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    work_col = &work[j*n];
		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			c_sub(&rhs_work[irow], &rhs_work[irow], &work_col[i]);
			work_col[i].r = 0.0;
	                work_col[i].i = 0.0;
			iptr++;
		    }
		}
#else		
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    clsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		    cmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			    &rhs_work[fsupc], &work[0] );

		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			c_sub(&rhs_work[irow], &rhs_work[irow], &work[i]);
			work[i].r = 0.;
	                work[i].i = 0.;
			iptr++;
		    }
		}
#endif		    
	    } /* else ... */
	} /* for L-solve */

#ifdef DEBUG
  	printf("After L-solve: y=\n");
	cprint_soln(n, nrhs, Bmat);
#endif

	/*
	 * Back solve Ux=y.
	 */
	for (k = Lstore->nsuper; k >= 0; k--) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += 4 * nsupc * (nsupc + 1) * nrhs;

	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
		    c_div(&rhs_work[fsupc], &rhs_work[fsupc], &Lval[luptr]);
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		CTRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
		ctrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else		
		for (j = 0; j < nrhs; j++)
		    cusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif		
	    }

	    for (j = 0; j < nrhs; ++j) {
		rhs_work = &Bmat[j*ldb];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
		    solve_ops += 8*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
			irow = U_SUB(i);
			cc_mult(&temp_comp, &rhs_work[jcol], &Uval[i]);
			c_sub(&rhs_work[irow], &rhs_work[irow], &temp_comp);
		    }
		}
	    }
	    
	} /* for U-solve */

#ifdef DEBUG
  	printf("After U-solve: x=\n");
	cprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X := Pc*X. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        stat->ops[SOLVE] = solve_ops;

    } else { /* Solve A'*X=B or CONJ(A)*X=B */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

	stat->ops[SOLVE] = 0;
        if (trans == TRANS) {
	    for (k = 0; k < nrhs; ++k) {
	        /* Multiply by inv(U'). */
	        sp_ctrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
	    
	        /* Multiply by inv(L'). */
	        sp_ctrsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);
	    }
         } else { /* trans == CONJ */
            for (k = 0; k < nrhs; ++k) {                
                /* Multiply by conj(inv(U')). */
                sp_ctrsv("U", "C", "N", L, U, &Bmat[k*ldb], stat, info);
                
                /* Multiply by conj(inv(L')). */
                sp_ctrsv("L", "C", "U", L, U, &Bmat[k*ldb], stat, info);
	    }
         }
	/* Compute the final solution X := Pr'*X (=inv(Pr)*X) */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

    }

    SUPERLU_FREE(work);
    SUPERLU_FREE(soln);
}

/*
 * Diagnostic print of the solution vector 
 */
void
cprint_soln(int n, int nrhs, complex *soln)
{
    int i;

    for (i = 0; i < n; i++) 
  	printf("\t%d: %.4f\n", i, soln[i].r);
}