1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
/*
Copyright (c) 1997 by Xerox Corporation. All rights reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program for any
purpose, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is
granted, provided the above notices are retained, and a notice that
the code was modified is included with the above copyright notice.
*/
#include <math.h>
#include "slu_Cnames.h"
#include "slu_scomplex.h"
extern void ccopy_();
int
clacon_(int *n, complex *v, complex *x, float *est, int *kase)
{
/*
Purpose
=======
CLACON estimates the 1-norm of a square matrix A.
Reverse communication is used for evaluating matrix-vector products.
Arguments
=========
N (input) INT
The order of the matrix. N >= 1.
V (workspace) COMPLEX PRECISION array, dimension (N)
On the final return, V = A*W, where EST = norm(V)/norm(W)
(W is not returned).
X (input/output) COMPLEX PRECISION array, dimension (N)
On an intermediate return, X should be overwritten by
A * X, if KASE=1,
A' * X, if KASE=2,
where A' is the conjugate transpose of A,
and CLACON must be re-called with all the other parameters
unchanged.
EST (output) FLOAT PRECISION
An estimate (a lower bound) for norm(A).
KASE (input/output) INT
On the initial call to CLACON, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from CLACON, KASE will again be 0.
Further Details
======= =======
Contributed by Nick Higham, University of Manchester.
Originally named CONEST, dated March 16, 1988.
Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation",
ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
=====================================================================
*/
/* Table of constant values */
int c__1 = 1;
complex zero = {0.0, 0.0};
complex one = {1.0, 0.0};
/* System generated locals */
float d__1;
/* Local variables */
static int iter;
static int jump, jlast;
static float altsgn, estold;
static int i, j;
float temp;
float safmin;
extern double slamch_(char *);
extern int icmax1_(int *, complex *, int *);
extern double scsum1_(int *, complex *, int *);
safmin = slamch_("Safe minimum");
if ( *kase == 0 ) {
for (i = 0; i < *n; ++i) {
x[i].r = 1. / (float) (*n);
x[i].i = 0.;
}
*kase = 1;
jump = 1;
return 0;
}
switch (jump) {
case 1: goto L20;
case 2: goto L40;
case 3: goto L70;
case 4: goto L110;
case 5: goto L140;
}
/* ................ ENTRY (JUMP = 1)
FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */
L20:
if (*n == 1) {
v[0] = x[0];
*est = c_abs(&v[0]);
/* ... QUIT */
goto L150;
}
*est = scsum1_(n, x, &c__1);
for (i = 0; i < *n; ++i) {
d__1 = c_abs(&x[i]);
if (d__1 > safmin) {
d__1 = 1 / d__1;
x[i].r *= d__1;
x[i].i *= d__1;
} else {
x[i] = one;
}
}
*kase = 2;
jump = 2;
return 0;
/* ................ ENTRY (JUMP = 2)
FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
L40:
j = icmax1_(n, &x[0], &c__1);
--j;
iter = 2;
/* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
for (i = 0; i < *n; ++i) x[i] = zero;
x[j] = one;
*kase = 1;
jump = 3;
return 0;
/* ................ ENTRY (JUMP = 3)
X HAS BEEN OVERWRITTEN BY A*X. */
L70:
#ifdef _CRAY
CCOPY(n, x, &c__1, v, &c__1);
#else
ccopy_(n, x, &c__1, v, &c__1);
#endif
estold = *est;
*est = scsum1_(n, v, &c__1);
L90:
/* TEST FOR CYCLING. */
if (*est <= estold) goto L120;
for (i = 0; i < *n; ++i) {
d__1 = c_abs(&x[i]);
if (d__1 > safmin) {
d__1 = 1 / d__1;
x[i].r *= d__1;
x[i].i *= d__1;
} else {
x[i] = one;
}
}
*kase = 2;
jump = 4;
return 0;
/* ................ ENTRY (JUMP = 4)
X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
jlast = j;
j = icmax1_(n, &x[0], &c__1);
--j;
if (x[jlast].r != (d__1 = x[j].r, fabs(d__1)) && iter < 5) {
++iter;
goto L50;
}
/* ITERATION COMPLETE. FINAL STAGE. */
L120:
altsgn = 1.;
for (i = 1; i <= *n; ++i) {
x[i-1].r = altsgn * ((float)(i - 1) / (float)(*n - 1) + 1.);
x[i-1].i = 0.;
altsgn = -altsgn;
}
*kase = 1;
jump = 5;
return 0;
/* ................ ENTRY (JUMP = 5)
X HAS BEEN OVERWRITTEN BY A*X. */
L140:
temp = scsum1_(n, x, &c__1) / (float)(*n * 3) * 2.;
if (temp > *est) {
#ifdef _CRAY
CCOPY(n, &x[0], &c__1, &v[0], &c__1);
#else
ccopy_(n, &x[0], &c__1, &v[0], &c__1);
#endif
*est = temp;
}
L150:
*kase = 0;
return 0;
} /* clacon_ */
|