1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
#include <stdio.h>
#include <stdlib.h>
#include "slu_ddefs.h"
extern void dtrsv_();
extern void dgemv_();
/*
* Function prototypes
*/
void dusolve(int, int, double*, double*);
void dlsolve(int, int, double*, double*);
void dmatvec(int, int, int, double*, double*, double*);
/* Return value: 0 - successful return
* > 0 - number of bytes allocated when run out of space
*/
int
dcolumn_bmod (
const int jcol, /* in */
const int nseg, /* in */
double *dense, /* in */
double *tempv, /* working array */
int *segrep, /* in */
int *repfnz, /* in */
int fpanelc, /* in -- first column in the current panel */
GlobalLU_t *Glu, /* modified */
SuperLUStat_t *stat /* output */
)
{
/*
* Purpose:
* ========
* Performs numeric block updates (sup-col) in topological order.
* It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
* Special processing on the supernodal portion of L\U[*,j]
*
*/
#ifdef _CRAY
_fcd ftcs1 = _cptofcd("L", strlen("L")),
ftcs2 = _cptofcd("N", strlen("N")),
ftcs3 = _cptofcd("U", strlen("U"));
#endif
int incx = 1, incy = 1;
double alpha, beta;
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = no of columns in supernode
* nsupr = no of rows in supernode (used as leading dimension)
* luptr = location of supernodal LU-block in storage
* kfnz = first nonz in the k-th supernodal segment
* no_zeros = no of leading zeros in a supernodal U-segment
*/
double ukj, ukj1, ukj2;
int luptr, luptr1, luptr2;
int fsupc, nsupc, nsupr, segsze;
int nrow; /* No of rows in the matrix of matrix-vector */
int jcolp1, jsupno, k, ksub, krep, krep_ind, ksupno;
register int lptr, kfnz, isub, irow, i;
register int no_zeros, new_next;
int ufirst, nextlu;
int fst_col; /* First column within small LU update */
int d_fsupc; /* Distance between the first column of the current
panel and the first column of the current snode. */
int *xsup, *supno;
int *lsub, *xlsub;
double *lusup;
int *xlusup;
int nzlumax;
double *tempv1;
double zero = 0.0;
double one = 1.0;
double none = -1.0;
int mem_error;
flops_t *ops = stat->ops;
xsup = Glu->xsup;
supno = Glu->supno;
lsub = Glu->lsub;
xlsub = Glu->xlsub;
lusup = Glu->lusup;
xlusup = Glu->xlusup;
nzlumax = Glu->nzlumax;
jcolp1 = jcol + 1;
jsupno = supno[jcol];
/*
* For each nonz supernode segment of U[*,j] in topological order
*/
k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++) {
krep = segrep[k];
k--;
ksupno = supno[krep];
if ( jsupno != ksupno ) { /* Outside the rectangular supernode */
fsupc = xsup[ksupno];
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
/* Distance from the current supernode to the current panel;
d_fsupc=0 if fsupc > fpanelc. */
d_fsupc = fst_col - fsupc;
luptr = xlusup[fst_col] + d_fsupc;
lptr = xlsub[fsupc] + d_fsupc;
kfnz = repfnz[krep];
kfnz = SUPERLU_MAX ( kfnz, fpanelc );
segsze = krep - kfnz + 1;
nsupc = krep - fst_col + 1;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nrow = nsupr - d_fsupc - nsupc;
krep_ind = lptr + nsupc - 1;
ops[TRSV] += segsze * (segsze - 1);
ops[GEMV] += 2 * nrow * segsze;
/*
* Case 1: Update U-segment of size 1 -- col-col update
*/
if ( segsze == 1 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
dense[irow] -= ukj*lusup[luptr];
luptr++;
}
} else if ( segsze <= 3 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc-1;
ukj1 = dense[lsub[krep_ind - 1]];
luptr1 = luptr - nsupr;
if ( segsze == 2 ) { /* Case 2: 2cols-col update */
ukj -= ukj1 * lusup[luptr1];
dense[lsub[krep_ind]] = ukj;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] );
}
} else { /* Case 3: 3cols-col update */
ukj2 = dense[lsub[krep_ind - 2]];
luptr2 = luptr1 - nsupr;
ukj1 -= ukj2 * lusup[luptr2-1];
ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
dense[lsub[krep_ind]] = ukj;
dense[lsub[krep_ind-1]] = ukj1;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
luptr2++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
}
}
} else {
/*
* Case: sup-col update
* Perform a triangular solve and block update,
* then scatter the result of sup-col update to dense
*/
no_zeros = kfnz - fst_col;
/* Copy U[*,j] segment from dense[*] to tempv[*] */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
tempv[i] = dense[irow];
++isub;
}
/* Dense triangular solve -- start effective triangle */
luptr += nsupr * no_zeros + no_zeros;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#else
if (nsupr < segsze) {
fprintf(stderr, "BAD ARGUMENT for dtrsv: N=%d LDA=%d incx=%d\n", segsze, nsupr, incx);
return -10000000;
}
dtrsv_( "L", "N", "U", &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#endif
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
alpha = one;
beta = zero;
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#else
dgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#endif
#else
dlsolve ( nsupr, segsze, &lusup[luptr], tempv );
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
dmatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1);
#endif
/* Scatter tempv[] into SPA dense[] as a temporary storage */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
dense[irow] = tempv[i];
tempv[i] = zero;
++isub;
}
/* Scatter tempv1[] into SPA dense[] */
for (i = 0; i < nrow; i++) {
irow = lsub[isub];
dense[irow] -= tempv1[i];
tempv1[i] = zero;
++isub;
}
}
} /* if jsupno ... */
} /* for each segment... */
/*
* Process the supernodal portion of L\U[*,j]
*/
nextlu = xlusup[jcol];
fsupc = xsup[jsupno];
/* Copy the SPA dense into L\U[*,j] */
new_next = nextlu + xlsub[fsupc+1] - xlsub[fsupc];
while ( new_next > nzlumax ) {
if (mem_error = dLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu))
return (mem_error);
lusup = Glu->lusup;
lsub = Glu->lsub;
}
for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) {
irow = lsub[isub];
lusup[nextlu] = dense[irow];
dense[irow] = zero;
++nextlu;
}
xlusup[jcolp1] = nextlu; /* Close L\U[*,jcol] */
/* For more updates within the panel (also within the current supernode),
* should start from the first column of the panel, or the first column
* of the supernode, whichever is bigger. There are 2 cases:
* 1) fsupc < fpanelc, then fst_col := fpanelc
* 2) fsupc >= fpanelc, then fst_col := fsupc
*/
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
if ( fst_col < jcol ) {
/* Distance between the current supernode and the current panel.
d_fsupc=0 if fsupc >= fpanelc. */
d_fsupc = fst_col - fsupc;
lptr = xlsub[fsupc] + d_fsupc;
luptr = xlusup[fst_col] + d_fsupc;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nsupc = jcol - fst_col; /* Excluding jcol */
nrow = nsupr - d_fsupc - nsupc;
/* Points to the beginning of jcol in snode L\U(jsupno) */
ufirst = xlusup[jcol] + d_fsupc;
ops[TRSV] += nsupc * (nsupc - 1);
ops[GEMV] += 2 * nrow * nsupc;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#else
if (nsupr < nsupc) {
fprintf(stderr, "BAD ARGUMENT for dtrsv: N=%d LDA=%d incx=%d\n", nsupc, nsupr, incx);
return -10000000;
}
dtrsv_( "L", "N", "U", &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#endif
alpha = none; beta = one; /* y := beta*y + alpha*A*x */
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#else
dgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#endif
#else
dlsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] );
dmatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc],
&lusup[ufirst], tempv );
/* Copy updates from tempv[*] into lusup[*] */
isub = ufirst + nsupc;
for (i = 0; i < nrow; i++) {
lusup[isub] -= tempv[i];
tempv[i] = 0.0;
++isub;
}
#endif
} /* if fst_col < jcol ... */
return 0;
}
|