File: scomplex.c

package info (click to toggle)
getfem%2B%2B 5.3%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 35,604 kB
  • sloc: cpp: 117,991; ansic: 73,600; fortran: 16,046; python: 7,403; sh: 3,624; perl: 1,722; makefile: 1,548
file content (127 lines) | stat: -rw-r--r-- 2,791 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

/*
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 */
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required 
approvals from U.S. Dept. of Energy) 

All rights reserved. 

The source code is distributed under BSD license, see the file License.txt
*/
/*
  Copyright (c) 1997 by Xerox Corporation.  All rights reserved.
 
  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 
  Permission is hereby granted to use or copy this program for any
  purpose, provided the above notices are retained on all copies.
  Permission to modify the code and to distribute modified code is
  granted, provided the above notices are retained, and a notice that
  the code was modified is included with the above copyright notice.
*/
/*
 * This file defines common arithmetic operations for complex type.
 */
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "slu_scomplex.h"


/* Complex Division c = a/b */
void c_div(complex *c, complex *a, complex *b)
{
    float ratio, den;
    float abr, abi, cr, ci;
  
    if( (abr = b->r) < 0.)
	abr = - abr;
    if( (abi = b->i) < 0.)
	abi = - abi;
    if( abr <= abi ) {
	if (abi == 0) {
	    fprintf(stderr, "z_div.c: division by zero\n");
            exit(-1);
	}	  
	ratio = b->r / b->i ;
	den = b->i * (1 + ratio*ratio);
	cr = (a->r*ratio + a->i) / den;
	ci = (a->i*ratio - a->r) / den;
    } else {
	ratio = b->i / b->r ;
	den = b->r * (1 + ratio*ratio);
	cr = (a->r + a->i*ratio) / den;
	ci = (a->i - a->r*ratio) / den;
    }
    c->r = cr;
    c->i = ci;
}


/* Returns sqrt(z.r^2 + z.i^2) */
double c_abs(complex *z)
{
    float temp;
    float real = z->r;
    float imag = z->i;

    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;
    if (imag > real) {
	temp = real;
	real = imag;
	imag = temp;
    }
    if ((real+imag) == real) return(real);
  
    temp = imag/real;
    temp = real*sqrt(1.0 + temp*temp);  /*overflow!!*/
    return (temp);
}


/* Approximates the abs */
/* Returns abs(z.r) + abs(z.i) */
double c_abs1(complex *z)
{
    float real = z->r;
    float imag = z->i;
  
    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;

    return (real + imag);
}

/* Return the exponentiation */
void c_exp(complex *r, complex *z)
{
    float expx;

    expx = exp(z->r);
    r->r = expx * cos(z->i);
    r->i = expx * sin(z->i);
}

/* Return the complex conjugate */
void r_cnjg(complex *r, complex *z)
{
    r->r = z->r;
    r->i = -z->i;
}

/* Return the imaginary part */
double r_imag(complex *z)
{
    return (z->i);
}