1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
/*
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
/*
Copyright (c) 1997 by Xerox Corporation. All rights reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program for any
purpose, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is
granted, provided the above notices are retained, and a notice that
the code was modified is included with the above copyright notice.
*/
/*
* This file defines common arithmetic operations for complex type.
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "slu_scomplex.h"
/* Complex Division c = a/b */
void c_div(complex *c, complex *a, complex *b)
{
float ratio, den;
float abr, abi, cr, ci;
if( (abr = b->r) < 0.)
abr = - abr;
if( (abi = b->i) < 0.)
abi = - abi;
if( abr <= abi ) {
if (abi == 0) {
fprintf(stderr, "z_div.c: division by zero\n");
exit(-1);
}
ratio = b->r / b->i ;
den = b->i * (1 + ratio*ratio);
cr = (a->r*ratio + a->i) / den;
ci = (a->i*ratio - a->r) / den;
} else {
ratio = b->i / b->r ;
den = b->r * (1 + ratio*ratio);
cr = (a->r + a->i*ratio) / den;
ci = (a->i - a->r*ratio) / den;
}
c->r = cr;
c->i = ci;
}
/* Returns sqrt(z.r^2 + z.i^2) */
double c_abs(complex *z)
{
float temp;
float real = z->r;
float imag = z->i;
if (real < 0) real = -real;
if (imag < 0) imag = -imag;
if (imag > real) {
temp = real;
real = imag;
imag = temp;
}
if ((real+imag) == real) return(real);
temp = imag/real;
temp = real*sqrt(1.0 + temp*temp); /*overflow!!*/
return (temp);
}
/* Approximates the abs */
/* Returns abs(z.r) + abs(z.i) */
double c_abs1(complex *z)
{
float real = z->r;
float imag = z->i;
if (real < 0) real = -real;
if (imag < 0) imag = -imag;
return (real + imag);
}
/* Return the exponentiation */
void c_exp(complex *r, complex *z)
{
float expx;
expx = exp(z->r);
r->r = expx * cos(z->i);
r->i = expx * sin(z->i);
}
/* Return the complex conjugate */
void r_cnjg(complex *r, complex *z)
{
r->r = z->r;
r->i = -z->i;
}
/* Return the imaginary part */
double r_imag(complex *z)
{
return (z->i);
}
|