1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
#include "slu_sdefs.h"
extern void countnz();
extern void fixupL();
void
sgstrf (superlu_options_t *options, SuperMatrix *A, float drop_tol,
int relax, int panel_size, int *etree, void *work, int lwork,
int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
SuperLUStat_t *stat, int *info)
{
/*
* Purpose
* =======
*
* SGSTRF computes an LU factorization of a general sparse m-by-n
* matrix A using partial pivoting with row interchanges.
* The factorization has the form
* Pr * A = L * U
* where Pr is a row permutation matrix, L is lower triangular with unit
* diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
* triangular (upper trapezoidal if A->nrow < A->ncol).
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* options (input) superlu_options_t*
* The structure defines the input parameters to control
* how the LU decomposition will be performed.
*
* A (input) SuperMatrix*
* Original matrix A, permuted by columns, of dimension
* (A->nrow, A->ncol). The type of A can be:
* Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.
*
* drop_tol (input) float (NOT IMPLEMENTED)
* Drop tolerance parameter. At step j of the Gaussian elimination,
* if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
* 0 <= drop_tol <= 1. The default value of drop_tol is 0.
*
* relax (input) int
* To control degree of relaxing supernodes. If the number
* of nodes (columns) in a subtree of the elimination tree is less
* than relax, this subtree is considered as one supernode,
* regardless of the row structures of those columns.
*
* panel_size (input) int
* A panel consists of at most panel_size consecutive columns.
*
* etree (input) int*, dimension (A->ncol)
* Elimination tree of A'*A.
* Note: etree is a vector of parent pointers for a forest whose
* vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
* On input, the columns of A should be permuted so that the
* etree is in a certain postorder.
*
* work (input/output) void*, size (lwork) (in bytes)
* User-supplied work space and space for the output data structures.
* Not referenced if lwork = 0;
*
* lwork (input) int
* Specifies the size of work array in bytes.
* = 0: allocate space internally by system malloc;
* > 0: use user-supplied work array of length lwork in bytes,
* returns error if space runs out.
* = -1: the routine guesses the amount of space needed without
* performing the factorization, and returns it in
* *info; no other side effects.
*
* perm_c (input) int*, dimension (A->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
* When searching for diagonal, perm_c[*] is applied to the
* row subscripts of A, so that diagonal threshold pivoting
* can find the diagonal of A, rather than that of A*Pc.
*
* perm_r (input/output) int*, dimension (A->nrow)
* Row permutation vector which defines the permutation matrix Pr,
* perm_r[i] = j means row i of A is in position j in Pr*A.
* If options->Fact = SamePattern_SameRowPerm, the pivoting routine
* will try to use the input perm_r, unless a certain threshold
* criterion is violated. In that case, perm_r is overwritten by
* a new permutation determined by partial pivoting or diagonal
* threshold pivoting.
* Otherwise, perm_r is output argument;
*
* L (output) SuperMatrix*
* The factor L from the factorization Pr*A=L*U; use compressed row
* subscripts storage for supernodes, i.e., L has type:
* Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
*
* U (output) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
* storage scheme, i.e., U has types: Stype = SLU_NC,
* Dtype = SLU_S, Mtype = SLU_TRU.
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if info = -i, the i-th argument had an illegal value
* > 0: if info = i, and i is
* <= A->ncol: U(i,i) is exactly zero. The factorization has
* been completed, but the factor U is exactly singular,
* and division by zero will occur if it is used to solve a
* system of equations.
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*
* ======================================================================
*
* Local Working Arrays:
* ======================
* m = number of rows in the matrix
* n = number of columns in the matrix
*
* xprune[0:n-1]: xprune[*] points to locations in subscript
* vector lsub[*]. For column i, xprune[i] denotes the point where
* structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need
* to be traversed for symbolic factorization.
*
* marker[0:3*m-1]: marker[i] = j means that node i has been
* reached when working on column j.
* Storage: relative to original row subscripts
* NOTE: There are 3 of them: marker/marker1 are used for panel dfs,
* see spanel_dfs.c; marker2 is used for inner-factorization,
* see scolumn_dfs.c.
*
* parent[0:m-1]: parent vector used during dfs
* Storage: relative to new row subscripts
*
* xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
* unexplored neighbor of i in lsub[*]
*
* segrep[0:nseg-1]: contains the list of supernodal representatives
* in topological order of the dfs. A supernode representative is the
* last column of a supernode.
* The maximum size of segrep[] is n.
*
* repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
* supernodal representative r, repfnz[r] is the location of the first
* nonzero in this segment. It is also used during the dfs: repfnz[r]>0
* indicates the supernode r has been explored.
* NOTE: There are W of them, each used for one column of a panel.
*
* panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
* the panel diagonal. These are filled in during spanel_dfs(), and are
* used later in the inner LU factorization within the panel.
* panel_lsub[]/dense[] pair forms the SPA data structure.
* NOTE: There are W of them.
*
* dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
* NOTE: there are W of them.
*
* tempv[0:*]: real temporary used for dense numeric kernels;
* The size of this array is defined by NUM_TEMPV() in ssp_defs.h.
*
*/
/* Local working arrays */
NCPformat *Astore;
int *iperm_r = NULL; /* inverse of perm_r; used when
options->Fact == SamePattern_SameRowPerm */
int *iperm_c; /* inverse of perm_c */
int *iwork;
float *swork;
int *segrep, *repfnz, *parent, *xplore;
int *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
int *xprune;
int *marker;
float *dense, *tempv;
int *relax_end;
float *a;
int *asub;
int *xa_begin, *xa_end;
int *xsup, *supno;
int *xlsub, *xlusup, *xusub;
int nzlumax;
static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */
/* Local scalars */
fact_t fact = options->Fact;
double diag_pivot_thresh = options->DiagPivotThresh;
int pivrow; /* pivotal row number in the original matrix A */
int nseg1; /* no of segments in U-column above panel row jcol */
int nseg; /* no of segments in each U-column */
register int jcol;
register int kcol; /* end column of a relaxed snode */
register int icol;
register int i, k, jj, new_next, iinfo;
int m, n, min_mn, jsupno, fsupc, nextlu, nextu;
int w_def; /* upper bound on panel width */
int usepr, iperm_r_allocated = 0;
int nnzL, nnzU;
int *panel_histo = stat->panel_histo;
flops_t *ops = stat->ops;
iinfo = 0;
m = A->nrow;
n = A->ncol;
min_mn = SUPERLU_MIN(m, n);
Astore = A->Store;
a = Astore->nzval;
asub = Astore->rowind;
xa_begin = Astore->colbeg;
xa_end = Astore->colend;
/* Allocate storage common to the factor routines */
*info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz,
panel_size, L, U, &Glu, &iwork, &swork);
if ( *info ) return;
xsup = Glu.xsup;
supno = Glu.supno;
xlsub = Glu.xlsub;
xlusup = Glu.xlusup;
xusub = Glu.xusub;
SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
&repfnz, &panel_lsub, &xprune, &marker);
sSetRWork(m, panel_size, swork, &dense, &tempv);
usepr = (fact == SamePattern_SameRowPerm);
if ( usepr ) {
/* Compute the inverse of perm_r */
iperm_r = (int *) intMalloc(m);
for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
iperm_r_allocated = 1;
}
iperm_c = (int *) intMalloc(n);
for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
/* Identify relaxed snodes */
relax_end = (int *) intMalloc(n);
if ( options->SymmetricMode == YES ) {
heap_relax_snode(n, etree, relax, marker, relax_end);
} else {
relax_snode(n, etree, relax, marker, relax_end);
}
ifill (perm_r, m, EMPTY);
ifill (marker, m * NO_MARKER, EMPTY);
supno[0] = -1;
xsup[0] = xlsub[0] = xusub[0] = xlusup[0] = 0;
w_def = panel_size;
/*
* Work on one "panel" at a time. A panel is one of the following:
* (a) a relaxed supernode at the bottom of the etree, or
* (b) panel_size contiguous columns, defined by the user
*/
for (jcol = 0; jcol < min_mn; ) {
if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
kcol = relax_end[jcol]; /* end of the relaxed snode */
panel_histo[kcol-jcol+1]++;
/* --------------------------------------
* Factorize the relaxed supernode(jcol:kcol)
* -------------------------------------- */
/* Determine the union of the row structure of the snode */
if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
xprune, marker, &Glu)) != 0 )
return;
nextu = xusub[jcol];
nextlu = xlusup[jcol];
jsupno = supno[jcol];
fsupc = xsup[jsupno];
new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
nzlumax = Glu.nzlumax;
while ( new_next > nzlumax ) {
if ( (*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) )
return;
}
for (icol = jcol; icol<= kcol; icol++) {
xusub[icol+1] = nextu;
/* Scatter into SPA dense[*] */
for (k = xa_begin[icol]; k < xa_end[icol]; k++)
dense[asub[k]] = a[k];
/* Numeric update within the snode */
ssnode_bmod(icol, jsupno, fsupc, dense, tempv, &Glu, stat);
if ( (*info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
iperm_r, iperm_c, &pivrow, &Glu, stat)) )
if ( iinfo == 0 ) iinfo = *info;
#ifdef DEBUG
sprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
#endif
}
jcol = icol;
} else { /* Work on one panel of panel_size columns */
/* Adjust panel_size so that a panel won't overlap with the next
* relaxed snode.
*/
panel_size = w_def;
for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
if ( relax_end[k] != EMPTY ) {
panel_size = k - jcol;
break;
}
if ( k == min_mn ) panel_size = min_mn - jcol;
panel_histo[panel_size]++;
/* symbolic factor on a panel of columns */
spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
dense, panel_lsub, segrep, repfnz, xprune,
marker, parent, xplore, &Glu);
/* numeric sup-panel updates in topological order */
spanel_bmod(m, panel_size, jcol, nseg1, dense,
tempv, segrep, repfnz, &Glu, stat);
/* Sparse LU within the panel, and below panel diagonal */
for ( jj = jcol; jj < jcol + panel_size; jj++) {
k = (jj - jcol) * m; /* column index for w-wide arrays */
nseg = nseg1; /* Begin after all the panel segments */
if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
segrep, &repfnz[k], xprune, marker,
parent, xplore, &Glu)) != 0) return;
/* Numeric updates */
if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
tempv, &segrep[nseg1], &repfnz[k],
jcol, &Glu, stat)) != 0) return;
/* Copy the U-segments to ucol[*] */
if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
perm_r, &dense[k], &Glu)) != 0)
return;
if ( (*info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
iperm_r, iperm_c, &pivrow, &Glu, stat)) )
if ( iinfo == 0 ) iinfo = *info;
/* Prune columns (0:jj-1) using column jj */
spruneL(jj, perm_r, pivrow, nseg, segrep,
&repfnz[k], xprune, &Glu);
/* Reset repfnz[] for this column */
resetrep_col (nseg, segrep, &repfnz[k]);
#ifdef DEBUG
sprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
#endif
}
jcol += panel_size; /* Move to the next panel */
} /* else */
} /* for */
*info = iinfo;
if ( m > n ) {
k = 0;
for (i = 0; i < m; ++i)
if ( perm_r[i] == EMPTY ) {
perm_r[i] = n + k;
++k;
}
}
countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
fixupL(min_mn, perm_r, &Glu);
sLUWorkFree(iwork, swork, &Glu); /* Free work space and compress storage */
if ( fact == SamePattern_SameRowPerm ) {
/* L and U structures may have changed due to possibly different
pivoting, even though the storage is available.
There could also be memory expansions, so the array locations
may have changed, */
((SCformat *)L->Store)->nnz = nnzL;
((SCformat *)L->Store)->nsuper = Glu.supno[n];
((SCformat *)L->Store)->nzval = Glu.lusup;
((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
((SCformat *)L->Store)->rowind = Glu.lsub;
((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
((NCformat *)U->Store)->nnz = nnzU;
((NCformat *)U->Store)->nzval = Glu.ucol;
((NCformat *)U->Store)->rowind = Glu.usub;
((NCformat *)U->Store)->colptr = Glu.xusub;
} else {
sCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL, Glu.lusup,
Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
Glu.xsup, SLU_SC, SLU_S, SLU_TRLU);
sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
Glu.usub, Glu.xusub, SLU_NC, SLU_S, SLU_TRU);
}
ops[FACT] += ops[TRSV] + ops[GEMV];
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
SUPERLU_FREE (iperm_c);
SUPERLU_FREE (relax_end);
}
|