1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
/*
* File name: zgsrfs.c
* History: Modified from lapack routine ZGERFS
*/
#include <math.h>
#include "slu_zdefs.h"
void
zgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
int *perm_c, int *perm_r, char *equed, double *R, double *C,
SuperMatrix *B, SuperMatrix *X, double *ferr, double *berr,
SuperLUStat_t *stat, int *info)
{
/*
* Purpose
* =======
*
* ZGSRFS improves the computed solution to a system of linear
* equations and provides error bounds and backward error estimates for
* the solution.
*
* If equilibration was performed, the system becomes:
* (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* trans (input) trans_t
* Specifies the form of the system of equations:
* = NOTRANS: A * X = B (No transpose)
* = TRANS: A'* X = B (Transpose)
* = CONJ: A**H * X = B (Conjugate transpose)
*
* A (input) SuperMatrix*
* The original matrix A in the system, or the scaled A if
* equilibration was done. The type of A can be:
* Stype = SLU_NC, Dtype = SLU_Z, Mtype = SLU_GE.
*
* L (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U. Use
* compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SLU_SC, Dtype = SLU_Z, Mtype = SLU_TRLU.
*
* U (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U as computed by
* zgstrf(). Use column-wise storage scheme,
* i.e., U has types: Stype = SLU_NC, Dtype = SLU_Z, Mtype = SLU_TRU.
*
* perm_c (input) int*, dimension (A->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
*
* perm_r (input) int*, dimension (A->nrow)
* Row permutation vector, which defines the permutation matrix Pr;
* perm_r[i] = j means row i of A is in position j in Pr*A.
*
* equed (input) Specifies the form of equilibration that was done.
* = 'N': No equilibration.
* = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
* = 'C': Column equilibration, i.e., A was postmultiplied by
* diag(C).
* = 'B': Both row and column equilibration, i.e., A was replaced
* by diag(R)*A*diag(C).
*
* R (input) double*, dimension (A->nrow)
* The row scale factors for A.
* If equed = 'R' or 'B', A is premultiplied by diag(R).
* If equed = 'N' or 'C', R is not accessed.
*
* C (input) double*, dimension (A->ncol)
* The column scale factors for A.
* If equed = 'C' or 'B', A is postmultiplied by diag(C).
* If equed = 'N' or 'R', C is not accessed.
*
* B (input) SuperMatrix*
* B has types: Stype = SLU_DN, Dtype = SLU_Z, Mtype = SLU_GE.
* The right hand side matrix B.
* if equed = 'R' or 'B', B is premultiplied by diag(R).
*
* X (input/output) SuperMatrix*
* X has types: Stype = SLU_DN, Dtype = SLU_Z, Mtype = SLU_GE.
* On entry, the solution matrix X, as computed by zgstrs().
* On exit, the improved solution matrix X.
* if *equed = 'C' or 'B', X should be premultiplied by diag(C)
* in order to obtain the solution to the original system.
*
* FERR (output) double*, dimension (B->ncol)
* The estimated forward error bound for each solution vector
* X(j) (the j-th column of the solution matrix X).
* If XTRUE is the true solution corresponding to X(j), FERR(j)
* is an estimated upper bound for the magnitude of the largest
* element in (X(j) - XTRUE) divided by the magnitude of the
* largest element in X(j). The estimate is as reliable as
* the estimate for RCOND, and is almost always a slight
* overestimate of the true error.
*
* BERR (output) double*, dimension (B->ncol)
* The componentwise relative backward error of each solution
* vector X(j) (i.e., the smallest relative change in
* any element of A or B that makes X(j) an exact solution).
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Internal Parameters
* ===================
*
* ITMAX is the maximum number of steps of iterative refinement.
*
*/
#define ITMAX 5
/* Table of constant values */
int ione = 1;
doublecomplex ndone = {-1., 0.};
doublecomplex done = {1., 0.};
/* Local variables */
NCformat *Astore;
doublecomplex *Aval;
SuperMatrix Bjcol;
DNformat *Bstore, *Xstore, *Bjcol_store;
doublecomplex *Bmat, *Xmat, *Bptr, *Xptr;
int kase;
double safe1, safe2;
int i, j, k, irow, nz, count, notran, rowequ, colequ;
int ldb, ldx, nrhs;
double s, xk, lstres, eps, safmin;
char transc[1];
trans_t transt;
doublecomplex *work;
double *rwork;
int *iwork;
extern double dlamch_(char *);
extern int zlacon_(int *, doublecomplex *, doublecomplex *, double *, int *);
#ifdef _CRAY
extern int CCOPY(int *, doublecomplex *, int *, doublecomplex *, int *);
extern int CSAXPY(int *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *);
#else
extern int zcopy_(int *, doublecomplex *, int *, doublecomplex *, int *);
extern int zaxpy_(int *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *);
#endif
Astore = A->Store;
Aval = Astore->nzval;
Bstore = B->Store;
Xstore = X->Store;
Bmat = Bstore->nzval;
Xmat = Xstore->nzval;
ldb = Bstore->lda;
ldx = Xstore->lda;
nrhs = B->ncol;
/* Test the input parameters */
*info = 0;
notran = (trans == NOTRANS);
if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;
else if ( A->nrow != A->ncol || A->nrow < 0 ||
A->Stype != SLU_NC || A->Dtype != SLU_Z || A->Mtype != SLU_GE )
*info = -2;
else if ( L->nrow != L->ncol || L->nrow < 0 ||
L->Stype != SLU_SC || L->Dtype != SLU_Z || L->Mtype != SLU_TRLU )
*info = -3;
else if ( U->nrow != U->ncol || U->nrow < 0 ||
U->Stype != SLU_NC || U->Dtype != SLU_Z || U->Mtype != SLU_TRU )
*info = -4;
else if ( ldb < SUPERLU_MAX(0, A->nrow) ||
B->Stype != SLU_DN || B->Dtype != SLU_Z || B->Mtype != SLU_GE )
*info = -10;
else if ( ldx < SUPERLU_MAX(0, A->nrow) ||
X->Stype != SLU_DN || X->Dtype != SLU_Z || X->Mtype != SLU_GE )
*info = -11;
if (*info != 0) {
i = -(*info);
xerbla_("zgsrfs", &i);
return;
}
/* Quick return if possible */
if ( A->nrow == 0 || nrhs == 0) {
for (j = 0; j < nrhs; ++j) {
ferr[j] = 0.;
berr[j] = 0.;
}
return;
}
rowequ = lsame_(equed, "R") || lsame_(equed, "B");
colequ = lsame_(equed, "C") || lsame_(equed, "B");
/* Allocate working space */
work = doublecomplexMalloc(2*A->nrow);
rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
iwork = intMalloc(A->nrow);
if ( !work || !rwork || !iwork )
ABORT("Malloc fails for work/rwork/iwork.");
if ( notran ) {
*(unsigned char *)transc = 'N';
transt = TRANS;
} else {
*(unsigned char *)transc = 'T';
transt = NOTRANS;
}
/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
nz = A->ncol + 1;
eps = dlamch_("Epsilon");
safmin = dlamch_("Safe minimum");
safe1 = nz * safmin;
safe2 = safe1 / eps;
/* Compute the number of nonzeros in each row (or column) of A */
for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
if ( notran ) {
for (k = 0; k < A->ncol; ++k)
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
++iwork[Astore->rowind[i]];
} else {
for (k = 0; k < A->ncol; ++k)
iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
}
/* Copy one column of RHS B into Bjcol. */
Bjcol.Stype = B->Stype;
Bjcol.Dtype = B->Dtype;
Bjcol.Mtype = B->Mtype;
Bjcol.nrow = B->nrow;
Bjcol.ncol = 1;
Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
Bjcol_store = Bjcol.Store;
Bjcol_store->lda = ldb;
Bjcol_store->nzval = work; /* address aliasing */
/* Do for each right hand side ... */
for (j = 0; j < nrhs; ++j) {
count = 0;
lstres = 3.;
Bptr = &Bmat[j*ldb];
Xptr = &Xmat[j*ldx];
while (1) { /* Loop until stopping criterion is satisfied. */
/* Compute residual R = B - op(A) * X,
where op(A) = A, A**T, or A**H, depending on TRANS. */
#ifdef _CRAY
CCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
zcopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
sp_zgemv(transc, ndone, A, Xptr, ione, done, work, ione);
/* Compute componentwise relative backward error from formula
max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
where abs(Z) is the componentwise absolute value of the matrix
or vector Z. If the i-th component of the denominator is less
than SAFE2, then SAFE1 is added to the i-th component of the
numerator and denominator before dividing. */
for (i = 0; i < A->nrow; ++i) rwork[i] = z_abs1( &Bptr[i] );
/* Compute abs(op(A))*abs(X) + abs(B). */
if (notran) {
for (k = 0; k < A->ncol; ++k) {
xk = z_abs1( &Xptr[k] );
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
rwork[Astore->rowind[i]] += z_abs1(&Aval[i]) * xk;
}
} else {
for (k = 0; k < A->ncol; ++k) {
s = 0.;
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
irow = Astore->rowind[i];
s += z_abs1(&Aval[i]) * z_abs1(&Xptr[irow]);
}
rwork[k] += s;
}
}
s = 0.;
for (i = 0; i < A->nrow; ++i) {
if (rwork[i] > safe2)
s = SUPERLU_MAX( s, z_abs1(&work[i]) / rwork[i] );
else
s = SUPERLU_MAX( s, (z_abs1(&work[i]) + safe1) /
(rwork[i] + safe1) );
}
berr[j] = s;
/* Test stopping criterion. Continue iterating if
1) The residual BERR(J) is larger than machine epsilon, and
2) BERR(J) decreased by at least a factor of 2 during the
last iteration, and
3) At most ITMAX iterations tried. */
if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
/* Update solution and try again. */
zgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
#ifdef _CRAY
CAXPY(&A->nrow, &done, work, &ione,
&Xmat[j*ldx], &ione);
#else
zaxpy_(&A->nrow, &done, work, &ione,
&Xmat[j*ldx], &ione);
#endif
lstres = berr[j];
++count;
} else {
break;
}
} /* end while */
stat->RefineSteps = count;
/* Bound error from formula:
norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*
( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
where
norm(Z) is the magnitude of the largest component of Z
inv(op(A)) is the inverse of op(A)
abs(Z) is the componentwise absolute value of the matrix or
vector Z
NZ is the maximum number of nonzeros in any row of A, plus 1
EPS is machine epsilon
The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
is incremented by SAFE1 if the i-th component of
abs(op(A))*abs(X) + abs(B) is less than SAFE2.
Use ZLACON to estimate the infinity-norm of the matrix
inv(op(A)) * diag(W),
where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
for (i = 0; i < A->nrow; ++i) rwork[i] = z_abs1( &Bptr[i] );
/* Compute abs(op(A))*abs(X) + abs(B). */
if ( notran ) {
for (k = 0; k < A->ncol; ++k) {
xk = z_abs1( &Xptr[k] );
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
rwork[Astore->rowind[i]] += z_abs1(&Aval[i]) * xk;
}
} else {
for (k = 0; k < A->ncol; ++k) {
s = 0.;
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
irow = Astore->rowind[i];
xk = z_abs1( &Xptr[irow] );
s += z_abs1(&Aval[i]) * xk;
}
rwork[k] += s;
}
}
for (i = 0; i < A->nrow; ++i)
if (rwork[i] > safe2)
rwork[i] = z_abs(&work[i]) + (iwork[i]+1)*eps*rwork[i];
else
rwork[i] = z_abs(&work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;
kase = 0;
do {
zlacon_(&A->nrow, &work[A->nrow], work,
&ferr[j], &kase);
if (kase == 0) break;
if (kase == 1) {
/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
if ( notran && colequ )
for (i = 0; i < A->ncol; ++i) {
zd_mult(&work[i], &work[i], C[i]);
}
else if ( !notran && rowequ )
for (i = 0; i < A->nrow; ++i) {
zd_mult(&work[i], &work[i], R[i]);
}
zgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);
for (i = 0; i < A->nrow; ++i) {
zd_mult(&work[i], &work[i], rwork[i]);
}
} else {
/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
for (i = 0; i < A->nrow; ++i) {
zd_mult(&work[i], &work[i], rwork[i]);
}
zgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
if ( notran && colequ )
for (i = 0; i < A->ncol; ++i) {
zd_mult(&work[i], &work[i], C[i]);
}
else if ( !notran && rowequ )
for (i = 0; i < A->ncol; ++i) {
zd_mult(&work[i], &work[i], R[i]);
}
}
} while ( kase != 0 );
/* Normalize error. */
lstres = 0.;
if ( notran && colequ ) {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, C[i] * z_abs1( &Xptr[i]) );
} else if ( !notran && rowequ ) {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, R[i] * z_abs1( &Xptr[i]) );
} else {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, z_abs1( &Xptr[i]) );
}
if ( lstres != 0. )
ferr[j] /= lstres;
} /* for each RHS j ... */
SUPERLU_FREE(work);
SUPERLU_FREE(rwork);
SUPERLU_FREE(iwork);
SUPERLU_FREE(Bjcol.Store);
return;
} /* zgsrfs */
|