1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
*/
#include "slu_zdefs.h"
void
zgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
SuperLUStat_t *stat, int *info )
{
/*
* Purpose
* =======
*
* ZGSSV solves the system of linear equations A*X=B, using the
* LU factorization from ZGSTRF. It performs the following steps:
*
* 1. If A is stored column-wise (A->Stype = SLU_NC):
*
* 1.1. Permute the columns of A, forming A*Pc, where Pc
* is a permutation matrix. For more details of this step,
* see sp_preorder.c.
*
* 1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
* by Gaussian elimination with partial pivoting.
* L is unit lower triangular with offdiagonal entries
* bounded by 1 in magnitude, and U is upper triangular.
*
* 1.3. Solve the system of equations A*X=B using the factored
* form of A.
*
* 2. If A is stored row-wise (A->Stype = SLU_NR), apply the
* above algorithm to the transpose of A:
*
* 2.1. Permute columns of transpose(A) (rows of A),
* forming transpose(A)*Pc, where Pc is a permutation matrix.
* For more details of this step, see sp_preorder.c.
*
* 2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
* determined by Gaussian elimination with partial pivoting.
* L is unit lower triangular with offdiagonal entries
* bounded by 1 in magnitude, and U is upper triangular.
*
* 2.3. Solve the system of equations A*X=B using the factored
* form of A.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* options (input) superlu_options_t*
* The structure defines the input parameters to control
* how the LU decomposition will be performed and how the
* system will be solved.
*
* A (input) SuperMatrix*
* Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
* of linear equations is A->nrow. Currently, the type of A can be:
* Stype = SLU_NC or SLU_NR; Dtype = SLU_Z; Mtype = SLU_GE.
* In the future, more general A may be handled.
*
* perm_c (input/output) int*
* If A->Stype = SLU_NC, column permutation vector of size A->ncol
* which defines the permutation matrix Pc; perm_c[i] = j means
* column i of A is in position j in A*Pc.
* If A->Stype = SLU_NR, column permutation vector of size A->nrow
* which describes permutation of columns of transpose(A)
* (rows of A) as described above.
*
* If options->ColPerm = MY_PERMC or options->Fact = SamePattern or
* options->Fact = SamePattern_SameRowPerm, it is an input argument.
* On exit, perm_c may be overwritten by the product of the input
* perm_c and a permutation that postorders the elimination tree
* of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
* is already in postorder.
* Otherwise, it is an output argument.
*
* perm_r (input/output) int*
* If A->Stype = SLU_NC, row permutation vector of size A->nrow,
* which defines the permutation matrix Pr, and is determined
* by partial pivoting. perm_r[i] = j means row i of A is in
* position j in Pr*A.
* If A->Stype = SLU_NR, permutation vector of size A->ncol, which
* determines permutation of rows of transpose(A)
* (columns of A) as described above.
*
* If options->RowPerm = MY_PERMR or
* options->Fact = SamePattern_SameRowPerm, perm_r is an
* input argument.
* otherwise it is an output argument.
*
* L (output) SuperMatrix*
* The factor L from the factorization
* Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
* Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
* Uses compressed row subscripts storage for supernodes, i.e.,
* L has types: Stype = SLU_SC, Dtype = SLU_Z, Mtype = SLU_TRLU.
*
* U (output) SuperMatrix*
* The factor U from the factorization
* Pr*A*Pc=L*U (if A->Stype = SLU_NC) or
* Pr*transpose(A)*Pc=L*U (if A->Stype = SLU_NR).
* Uses column-wise storage scheme, i.e., U has types:
* Stype = SLU_NC, Dtype = SLU_Z, Mtype = SLU_TRU.
*
* B (input/output) SuperMatrix*
* B has types: Stype = SLU_DN, Dtype = SLU_Z, Mtype = SLU_GE.
* On entry, the right hand side matrix.
* On exit, the solution matrix if info = 0;
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* > 0: if info = i, and i is
* <= A->ncol: U(i,i) is exactly zero. The factorization has
* been completed, but the factor U is exactly singular,
* so the solution could not be computed.
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol.
*
*/
DNformat *Bstore;
SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
SuperMatrix AC; /* Matrix postmultiplied by Pc */
int lwork = 0, *etree, i;
/* Set default values for some parameters */
double drop_tol = 0.;
int panel_size; /* panel size */
int relax; /* no of columns in a relaxed snodes */
int permc_spec;
trans_t trans = NOTRANS;
double *utime;
double t; /* Temporary time */
/* Test the input parameters ... */
*info = 0;
Bstore = B->Store;
if ( options->Fact != DOFACT ) *info = -1;
else if ( A->nrow != A->ncol || A->nrow < 0 ||
(A->Stype != SLU_NC && A->Stype != SLU_NR) ||
A->Dtype != SLU_Z || A->Mtype != SLU_GE )
*info = -2;
else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
B->Stype != SLU_DN || B->Dtype != SLU_Z || B->Mtype != SLU_GE )
*info = -7;
if ( *info != 0 ) {
i = -(*info);
xerbla_("zgssv", &i);
return;
}
utime = stat->utime;
/* Convert A to SLU_NC format when necessary. */
if ( A->Stype == SLU_NR ) {
NRformat *Astore = A->Store;
AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
Astore->nzval, Astore->colind, Astore->rowptr,
SLU_NC, A->Dtype, A->Mtype);
trans = TRANS;
} else {
if ( A->Stype == SLU_NC ) AA = A;
}
t = SuperLU_timer_();
/*
* Get column permutation vector perm_c[], according to permc_spec:
* permc_spec = NATURAL: natural ordering
* permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
* permc_spec = MMD_ATA: minimum degree on structure of A'*A
* permc_spec = COLAMD: approximate minimum degree column ordering
* permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
*/
permc_spec = options->ColPerm;
if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
get_perm_c(permc_spec, AA, perm_c);
utime[COLPERM] = SuperLU_timer_() - t;
etree = intMalloc(A->ncol);
t = SuperLU_timer_();
sp_preorder(options, AA, perm_c, etree, &AC);
utime[ETREE] = SuperLU_timer_() - t;
panel_size = sp_ienv(1);
relax = sp_ienv(2);
/*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n",
relax, panel_size, sp_ienv(3), sp_ienv(4));*/
t = SuperLU_timer_();
/* Compute the LU factorization of A. */
zgstrf(options, &AC, drop_tol, relax, panel_size,
etree, NULL, lwork, perm_c, perm_r, L, U, stat, info);
utime[FACT] = SuperLU_timer_() - t;
t = SuperLU_timer_();
if ( *info == 0 ) {
/* Solve the system A*X=B, overwriting B with X. */
zgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
}
utime[SOLVE] = SuperLU_timer_() - t;
SUPERLU_FREE (etree);
Destroy_CompCol_Permuted(&AC);
if ( A->Stype == SLU_NR ) {
Destroy_SuperMatrix_Store(AA);
SUPERLU_FREE(AA);
}
}
|