1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
#!/usr/bin/env python3
# -*- coding: UTF8 -*-
# Python GetFEM interface
#
# Copyright (C) 2020-2023 Konstantinos Poulios.
#
# This file is a part of GetFEM
#
# GetFEM is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version along with the GCC Runtime Library
# Exception either version 3.1 or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License and GCC Runtime Library Exception for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
#
############################################################################
""" This example simulates necking during uniaxial tension of an
axisymmetric rod, with a hyperelastoplastic constitutive law with
linear isotropic hardening. Only one eighth of the rod is actually
modeled, using hexahedral 3D elements.
This is a reference implementation of finite strain plasticity with
linear hardening in 3D using the generic weak form language of GetFEM.
"""
import getfem as gf
import numpy as np
import os, sys, subprocess
import time
import shutil
gf.util_trace_level(1)
gf.util_warning_level(1)
# Input data
L = 2*26.667 # block length
H = 2*6.413 # block height/diameter
dH = 0.018*H # height reduction at the center of the block
N_L = 16 # number of elements in block length direction
N_R1 = 4 # number of elements in radial direction (core)
N_R2 = 2 # number of elements in radial direction (peel)
E = 210e3 # Young's modulus
nu = 0.3 # Poisson's ratio
pl_sigma_0 = 5e2 # Initial yield stress
pl_H = 21e1 # Plastic modulus (0.1% of E)
disp = 8. # maximum displacement
steps_t = 200 # number of load steps for increasing the load
#------------------------------------
geotrans2d = "GT_QK(2,2)" # geometric transformation
disp_fem_order = 2 # displacements finite element order
mult_fem_order = 2 # dirichlet multipliers finite element order
#integration_degree = 3 # 4 gauss points per quad
integration_degree = 5 # 9 gauss points per quad
#------------------------------------
resultspath = "./results"
if not os.path.exists(resultspath):
os.makedirs(resultspath)
tee = subprocess.Popen(["tee", f"{resultspath}/tension_3D.log"],
stdin=subprocess.PIPE)
sys.stdout.flush()
os.dup2(tee.stdin.fileno(), sys.stdout.fileno())
sys.stderr.flush()
os.dup2(tee.stdin.fileno(), sys.stderr.fileno())
# auxiliary constants
XM_RG = 1
XP_RG = 2
YM_RG = 3
ZM_RG = 4
# Mesh
mesh2d = gf.Mesh("import", "structured_ball",
f"GT='{geotrans2d}';ORG=[0,0];SIZES=[{H/2.}];NSUBDIV=[{N_R1},{N_R2}];SYMMETRIES=2")
mesh = gf.Mesh("prismatic", mesh2d, N_L, disp_fem_order)
trsf = np.zeros([3,3])
trsf[0,2] = L/2.
trsf[2,1] = 1
trsf[1,0] = 1
mesh.transform(trsf)
N = mesh.dim()
outer_faces = mesh.outer_faces()
outer_normals = mesh.normal_of_faces(outer_faces)
mesh.set_region(XM_RG,
outer_faces[:,np.nonzero(outer_normals[0] < -0.95)[0]])
mesh.set_region(XP_RG,
outer_faces[:,np.nonzero(outer_normals[0] > 0.95)[0]])
mesh.set_region(YM_RG,
outer_faces[:,np.nonzero(outer_normals[1] < -0.95)[0]])
mesh.set_region(ZM_RG,
outer_faces[:,np.nonzero(outer_normals[2] < -0.95)[0]])
if dH > 0:
pts = mesh.pts()
dr = 0.2 # fine element size ratio w.r.t. uniform mesh size
r0 = 0.04 # ratio of the finer meshed area w.r.t. the total length
x0 = r0/dr
b2 = (1-dr)/(x0-1)**2
b1 = dr - 2*b2*x0
b0 = 1 - b1 -b2
for i in range(pts.shape[1]):
x = pts[0,i]
y = pts[1,i]
z = pts[2,i]
r = np.sqrt(y**2+z**2)
t = 2*abs(x)/L
if t < x0:
x *= dr;
else:
x = (b0 + b1*t + b2*t**2) * np.sign(x)*L/2
pts[0,i] = x
pts[1,i] -= (y*dH)/(2*H) * (1 + np.cos(2.*np.pi*x/L))
pts[2,i] -= (z*dH)/(2*H) * (1 + np.cos(2.*np.pi*x/L))
mesh.set_pts(pts)
mesh.export_to_vtu(f"{resultspath}/mesh.vtu")
# FEM
mfN = gf.MeshFem(mesh, N)
mfN.set_classical_fem(disp_fem_order)
#if disp_fem_order == 2:
# mfN.set_fem(gf.Fem("FEM_Q2_INCOMPLETE(3)"))
#else:
# mfN.set_classical_fem(disp_fem_order)
keptdofs = np.arange(mfN.nbdof())
keptdofs = np.setdiff1d(keptdofs, mfN.basic_dof_on_region(XM_RG)[0::N])
keptdofs = np.setdiff1d(keptdofs, mfN.basic_dof_on_region(YM_RG)[1::N])
keptdofs = np.setdiff1d(keptdofs, mfN.basic_dof_on_region(ZM_RG)[2::N])
mfu = gf.MeshFem("partial", mfN, keptdofs)
mfmult = gf.MeshFem(mesh, 1)
mfmult.set_classical_fem(mult_fem_order)
mfout1 = gf.MeshFem(mesh)
mfout1.set_classical_discontinuous_fem(disp_fem_order-1)
mfout2 = gf.MeshFem(mesh)
mfout2.set_classical_discontinuous_fem(disp_fem_order)
mim = gf.MeshIm(mesh, integration_degree)
mimd1 = gf.MeshImData(mim)
mimd6 = gf.MeshImData(mim, -1, 6)
# Model
md = gf.Model("real")
md.add_fem_variable("u", mfu)
# Vertical displacement
md.add_initialized_data("disp", [0.])
md.add_initialized_data("K", E/(3.*(1.-2.*nu))) # Bulk modulus
md.add_initialized_data("mu", E/(2*(1+nu))) # Shear modulus
md.add_macro("F", "Id(3)+Grad_u")
md.add_macro("J", "Det(F)")
md.add_macro("tauH", "K*log(J)")
md.add_im_data("gamma0", mimd1) # accumulated plastic strain at previous time step
md.add_im_data("invCp0vec", mimd6) # Components 11, 22, 33, 12, 23 and 31 of the plastic
md.set_variable("invCp0vec", # part ofthe inverse right Cauchy Green tensor at the
np.tile([1,1,1,0,0,0], mimd6.nbpts())) # previous step. Symmetric components are omitted.
md.add_macro("invCp0", "[[[1,0,0],[0,0,0],[0,0,0]],"+\
" [[0,0,0],[0,1,0],[0,0,0]],"+\
" [[0,0,0],[0,0,0],[0,0,1]],"+\
" [[0,1,0],[1,0,0],[0,0,0]],"+\
" [[0,0,0],[0,0,1],[0,1,0]],"+\
" [[0,0,1],[0,0,0],[1,0,0]]].invCp0vec") #Vec6ToMat3x3
md.add_macro("devlogbetr", "Deviator(Logm(F*invCp0*F'))")
md.add_macro("Y0","{A}+{B}*gamma0".format(A=np.sqrt(2./3.)*pl_sigma_0, B=2./3.*pl_H))
md.add_macro("ksi",
"(1-1/max(1,mu/J*Norm(devlogbetr)/Y0))/(2+{B}/(mu/J))"
.format(B=2./3.*pl_H))
md.add_macro("gamma", "gamma0+ksi*Norm(devlogbetr)")
md.add_macro("devlogbe", "(1-2*ksi)*devlogbetr")
md.add_macro("tauD", "mu*devlogbe")
md.add_nonlinear_term\
(mim, "((tauH*Id(3)+tauD)*Inv(F')):Grad_Test_u")
md.add_macro("sigmaD", "tauD/J")
md.add_macro("sigma", "tauH/J*Id(3)+mu/J*devlogbe")
md.add_macro("invCp", "(Inv(F)*Expm(-ksi*devlogbetr)*(F))*invCp0"\
"*(Inv(F)*Expm(-ksi*devlogbetr)*(F))'")
# Dirichlet condition
md.add_filtered_fem_variable("dirmult", mfmult, XP_RG)
md.add_nonlinear_term(mim, "(disp-u(1))*dirmult", XP_RG)
print(f"Model dofs: {md.nbdof()}\nDisplacement fem dofs: {mfu.nbdof()}")
print("Dirichlet mult dofs: %i" % md.mesh_fem_of_variable("dirmult").nbdof())
shutil.copyfile(os.path.abspath(sys.argv[0]),resultspath+"/"+sys.argv[0])
starttime_overall = time.process_time()
with open(f"{resultspath}/tension_3D.dat", "w") as f1:
for step in range(steps_t+1):
md.set_variable("disp", disp*step/float(steps_t))
print('STEP %i: Solving with disp = %g' % (step, md.variable("disp")))
starttime = time.process_time()
md.solve("noisy", "max_iter", 25, "max_res", 1e-10,
"lsearch", "simplest", "alpha max ratio", 100, "alpha min", 0.2, "alpha mult", 0.6,
"alpha threshold res", 1e9)
print("STEP %i COMPLETED IN %f SEC" % (step, time.process_time()-starttime))
F = gf.asm_generic(mim, 0, "dirmult", XP_RG, md)
print("Displacement %g, total force %g" % (md.variable("disp"), F))
A = gf.asm_generic(mim, 0, "Norm(J*Inv(F')*[1;0;0])", XP_RG, md)
V = gf.asm_generic(mim, 0, "1", -1, md)
sigma11 = gf.asm_generic(mim, 0, "sigma(1,1)", -1, md)/V
gamma = gf.asm_generic(mim, 0, "gamma", -1, md)/V
f1.write("%.10g %.10g %.10g %.10g %10g %10g\n"
% (md.variable("disp"), F, A, F/A, sigma11, gamma))
f1.flush()
output = (mfout1, md.local_projection(mim, "sqrt(1.5)*Norm(sigmaD)", mfout1), "Von Mises Stress",
mfout1, md.local_projection(mim, "J", mfout1), "J",
mfout1, md.local_projection(mim, "sigma(1,1)", mfout1), "Cauchy stress 11",
mfout1, md.local_projection(mim, "sigma(2,2)", mfout1), "Cauchy stress 22",
mfout1, md.local_projection(mim, "sigma(1,2)", mfout1), "Cauchy stress 12",
mfout1, md.local_projection(mim, "sigma(3,3)", mfout1), "Cauchy stress 33",
mfu, md.variable("u"), "Displacements",
mfout2, md.interpolation("dirmult", mfout2, XP_RG), "Nominal reaction traction",
mfout2, md.local_projection(mim, "gamma", mfout2), "plastic strain")
mfout2.export_to_vtu(f"{resultspath}/tension_3D_{step}.vtu", *output)
md.set_variable("gamma0", md.interpolation("gamma", mimd1, -1))
md.set_variable("invCp0vec",
md.interpolation("[[[1,0,0,0,0,0] ,[0,0,0,0.5,0,0],[0,0,0,0,0,0.5]],"+\
" [[0,0,0,0.5,0,0],[0,1,0,0,0,0] ,[0,0,0,0,0.5,0]],"+\
" [[0,0,0,0,0,0.5],[0,0,0,0,0.5,0],[0,0,1,0,0,0]]]:invCp", mimd6, -1))
print("OVERALL SOLUTION TIME IS %f SEC" % (time.process_time()-starttime_overall))
|