File: icare.param

package info (click to toggle)
getfem 5.4.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 31,640 kB
  • sloc: cpp: 126,151; ansic: 24,798; python: 9,244; sh: 3,648; perl: 1,829; makefile: 1,367
file content (165 lines) | stat: -rw-r--r-- 5,660 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% Copyright (C) 2017-2020 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
% -*- matlab -*- (enables emacs matlab mode)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for program stokes                                           %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = 2;
QUAD = 0;
NU = 1/80;        % test 1/100 sinon, Viscosity coefficient. (NU = 1 / Re)
ALPHA = 0.0;   	  % rate of rotation of the cylinder
                  % The RADIUS must be less than 1 

PRINT_PT_PART = 1; % 0 = no output values in the point define in BOXX
				 % 1 = output

CLCD = 1; % Computation of the Lift and Drag Coefficients

POSTPROCESS = 0;
IstartPostprocess = 0;
PasPostprocess = 1;
NbPostprocess = 1;


if (N==2)
  BOXXmin = 9.9;
  BOXXmax = 10.1;
  BOXYmin = -0.1;
  BOXYmax =  0.1;
end;
  
if (N==3)
  BOXXmin = 4.5;
  BOXXmax = 5.5;
  BOXYmin = -0.5;
  BOXYmax =  0.5;
  BOXZmin = -0.1;
  BOXZmax = 0.1;
end;

%INIT_FILE_Um1="SolIcare/icare.1Um1";
%INIT_FILE_U="icare.U500";
%INIT_FILE_P="icare.P500";


Tinitial = 0;
DT = 0.01;        % Time step
T = 250;         % Final time

NOISY = 0;

TIME_ORDER = 1 % 1 = Euler of order 1
               % 2 = Euler of order 2


OPTION = 4;  % 0 = Stokes avec schema de splitting 1
             % 1 = Navier Stokes avec schema de splitting 1
	     % 2 = Navier Stokes with energy conserving midpoint scheme
	     % 3 = Navier Stokes with prediction-correction scheme
             % 4 = Navier Stokes with prediction-correction without bricks

PROBLEM = 3; % 1 = Reference solution for Stokes
             % 2 = Reference solution for Navier Stokes
	     % 3 = flow around a cylinder (centered at 0)

NON_REFLECTIVE_BC = 0;   % 0 : basic condition 
                               % if (N==2) : optimal condition, all
                               % terms are considered 
                               % if (N==3) : some terms are neglect
                               % => bad choice
			 % 1 : improved condition
                               % interpolation of the hessian is
                               % made ... so it is not optimal 
                               % if (N==2) : the basic condition is
                               % better
                               % if (N==3) : all terms are considered


if (N == 2 && ~QUAD)
% MESHNAME = 'maillage003.mesh'; % name of the mesh file
%MESHNAME = 'gmshv2:pouet5_v2.msh';
%MESHNAME = 'MESHES/navier_stokes_cylinder2.mesh'; % name of the mesh file
%MESHNAME = 'gmshv2:triangular.msh';
%MESHNAME = 'gmshv2:yannick.msh';
MESHNAME = 'gmshv2:MESHES/mejdi.msh';
%MESHNAME = 'gmshv2:Rkd2.msh';
%MESHNAME = 'maillage02.mesh';
%MESHNAME = 'structured:GT="GT_PK(2,1)";SIZES=[1,1];NOISED=0;NSUBDIV=[30,30]';
  if (OPTION >= 3)
    FEM_TYPE = 'FEM_PK(2,2)';  % PK method
    FEM_TYPE_P = 'FEM_PK(2,1)';  % P1 for triangles
  else % take care to the inf-sup condition !
    FEM_TYPE = 'FEM_PK(2,2)';  % PK method
    FEM_TYPE_P = 'FEM_PK(2,1)';  % P1 for triangles
  end    
  % DATA_FEM_TYPE = 'FEM_PK(2,1)';
  INTEGRATION = 'IM_TRIANGLE(6)'; 
end

if (N == 2 && QUAD)
%  MESHNAME = 'structured:GT="GT_QK(2,1)";SIZES=[1,1];NOISED=0;NSUBDIV=[10,10]';
%  MESHNAME = 'gmshv2:rectangularRitesh2D.msh';
%  MESHNAME = 'gmshv2:rectangular.msh';
%  MESHNAME = 'gmshv2:mesh100_2D.msh';
%  MESHNAME = 'gmshv2:cyl2DsmScaling.msh';

MESHNAME = 'gmshv2:cyl2D_400k-ddl.msh';
%MESHNAME = 'gmshv2:cyl2D_1,7M-ddl.msh';

%   MESHNAME = 'gmshv2:cyl2D.msh';
  FEM_TYPE = 'FEM_QK(2,2)';  % QK method
  FEM_TYPE_P = 'FEM_QK(2,1)';
  % DATA_FEM_TYPE = 'FEM_QK(2,1)';
  INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(2,10)'; 
  %INTEGRATION = 'IM_QUAD(7)'; 
end

if (N == 3 && ~QUAD)
  %MESHNAME = 'structured:GT="GT_PK(3,1)";SIZES=[1,1,1];NSUBDIV=[5,5,5]';
%  MESHNAME = 'gmshv2:tralala_3D.msh';
   MESHNAME = 'gmshv2:cyl3D.msh';
  FEM_TYPE = 'FEM_PK(3,2)';  % PK method
  FEM_TYPE_P = 'FEM_PK(3,1)';
  % DATA_FEM_TYPE = 'FEM_PK(3,1)'; 
  INTEGRATION = 'IM_TETRAHEDRON(8)'; 
end

if (N == 3 && QUAD)
%  MESHNAME = 'gmshv2:rectangularRitesh3D.msh';
  MESHNAME = 'gmshv2:cylinder3D.msh';
%   MESHNAME = 'gmshv2:cyl3D.msh';
%   MESHNAME = 'gmshv2:cyl3D-20.msh';
%   MESHNAME = 'gmshv2:cyl3D-40.msh';
%   MESHNAME = 'gmshv2:cyl3D-60.msh';
  FEM_TYPE = 'FEM_QK(3,2)';  % QK method
  FEM_TYPE_P = 'FEM_QK(3,1)';
  % DATA_FEM_TYPE = 'FEM_QK(3,1)';
  INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(3,10)'; 
  %INTEGRATION = 'IM_HEXAHEDRON(9)'; 
end


RESIDUAL = 1E-9;     	% residual for conjugate gradient.

%%%%%   saving parameters                                             %%%%%

ROOTFILENAME = 'icare';     % Root of data files.
DX_EXPORT = 1; % export solution to a .dx file ?
VTK_EXPORT = 1; 
DT_EXPORT = 100*DT;
DT_MUMPS_ANALYSE=50;
BORNE=1;