1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/*===========================================================================
Copyright (C) 2006-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
@file bilaplacian.cc
@brief Bilaplacian problem. A dummy
bilaplacian problem is solved on a regular mesh, and is compared to
the analytical solution.
This program is used to check that getfem++ is working. This is also
a good example of use of GetFEM.
@see laplacian.cc
*/
#include "getfem/getfem_config.h"
#include "getfem/getfem_assembling.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_fourth_order.h"
#include "getfem/getfem_model_solvers.h"
#include "gmm/gmm.h"
#include "getfem/getfem_derivatives.h"
#include "gmm/gmm_inoutput.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::base_matrix; /* small dense matrix. */
typedef getfem::model_real_plain_vector plain_vector;
/**************************************************************************/
/* Exact solution. */
/**************************************************************************/
scalar_type FT = 0.0;
scalar_type D = 1.0;
scalar_type nu = 0.0;
scalar_type pressure = 1.0 ;
#if 1
scalar_type sol_u(const base_node &x)
{ return sin(FT*std::accumulate(x.begin(), x.end(), 0.0)); }
scalar_type sol_lapl_u(const base_node &x)
{ return -FT*FT*sol_u(x) * x.size(); }
scalar_type sol_f(const base_node &x)
{ return FT*FT*FT*FT*sol_u(x)*gmm::sqr(x.size()); }
base_small_vector sol_du(const base_node &x) {
base_small_vector res(x.size());
std::fill(res.begin(), res.end(),
FT * cos(FT*std::accumulate(x.begin(), x.end(), 0.0)));
return res;
}
base_small_vector neumann_val(const base_node &x)
{ return -FT*FT*sol_du(x) * scalar_type(x.size()); }
base_matrix sol_hessian(const base_node &x) {
base_matrix m(x.size(), x.size());
std::fill(m.begin(), m.end(), -FT*FT*sol_u(x));
return m;
}
#else
scalar_type sol_u(const base_node &x) {
return pressure/(2. * D) * x[0] * x[0] * ( x[0] * x[0] / 12. - x[0] / 3. + 1./2. ); }
scalar_type sol_lapl_u(const base_node &) {
return pressure/(2. * D) * ( x[0] * x[0] - 2. * x[0] + 1. ); }
scalar_type sol_f(const base_node &) { return pressure ; }
base_small_vector sol_du(const base_node &x) {
base_small_vector res(x.size());
res[0] = pressure/(2. * D) * x[0] * ( x[0] * x[0] / 3. - x[0] + 1. );
res[1] = 0.;
return res;
}
base_small_vector neumann_val(const base_node &x)
{ cout << "erreur : KL = 1 doit etre selectionne \n";
return 0 ; /*base_small_vector(x.size()); */ }
base_matrix sol_hessian(const base_node &x)
{ base_matrix m(x.size(), x.size());
m(0,0) = sol_lapl_u(x);
return m; }
// scalar_type sol_u(const base_node &x) { return x[0]*x[1]; }
// scalar_type sol_lapl_u(const base_node &) { return 0.0; }
// scalar_type sol_f(const base_node &) { return 0.0; }
// base_small_vector sol_du(const base_node &x) {
// base_small_vector res(x.size()); res[0] = x[1]; res[1] = x[0];
// return res;
// }
// base_small_vector neumann_val(const base_node &x)
// { return base_small_vector(x.size()); }
//
// base_matrix sol_hessian(const base_node &x)
// { base_matrix m(x.size(), x.size()); m(1,0) = m(0,1) = 1.0; return m; }
#endif
base_matrix sol_mtensor(const base_node &x) {
base_matrix m = sol_hessian(x), mm(x.size(), x.size());
scalar_type l = sol_lapl_u(x);
for (size_type i = 0; i < x.size(); ++i) mm(i,i) = l * nu;
gmm::scale(m, (1-nu));
gmm::add(mm, m);
gmm::scale(m, -D);
return m;
}
base_small_vector sol_bf(const base_node &x)
{ return -D * neumann_val(x); }
/**************************************************************************/
/* Structure for the bilaplacian problem. */
/**************************************************************************/
struct bilaplacian_problem {
enum { CLAMPED_BOUNDARY_NUM = 0, SIMPLE_SUPPORT_BOUNDARY_NUM = 1,
FORCE_BOUNDARY_NUM = 2, MOMENTUM_BOUNDARY_NUM = 3};
/* Boundary conditions :
CLAMPED_BOUNDARY_NUM --> normal derivative of the solution
SIMPLE_SUPPORT_BOUNDARY_NUM --> value of the solution
FORCE_BOUNDARY_NUM --> the "big" condition
MOMENTUM_BOUNDARY_NUM --> flexure moment condition */
getfem::mesh mesh; /* the mesh */
getfem::mesh_im mim; /* the integration methods. */
getfem::mesh_fem mf_u; /* main mesh_fem, for the bilaplacian solution */
getfem::mesh_fem mf_mult; /* mesh_fem for the Dirichlet condition. */
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
scalar_type residual; /* max residual for the iterative solvers */
size_type dirichlet_version;
std::string datafilename;
bgeot::md_param PARAM;
bool KL;
size_type NX ;
size_type boundary_ref ;
/* boundary_ref = 0 corresponds to clamped edge on the 4 edges
boundary_ref = 1 corresponds to :
free edge
__________
| |
simple | | simple
support | | support
| |
|__________|
clamped
edge
*/
bool solve(plain_vector &U);
void init(void);
void compute_error(plain_vector &U);
bilaplacian_problem(void) : mim(mesh),mf_u(mesh), mf_mult(mesh),
mf_rhs(mesh) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void bilaplacian_problem::init(void) {
std::string MESH_FILE = PARAM.string_value("MESH_FILE");
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE = PARAM.string_value("FEM_TYPE","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE=" << FEM_TYPE << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
size_type N;
if (!MESH_FILE.empty()) {
mesh.read_from_file(MESH_FILE);
MESH_TYPE = bgeot::name_of_geometric_trans
(mesh.trans_of_convex(mesh.convex_index().first_true()));
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
N = mesh.dim();
} else {
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
/* First step : build the mesh */
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
N = pgt->dim();
std::vector<size_type> nsubdiv(N);
NX = PARAM.int_value("NX", "Nomber of space steps ") ;
std::fill(nsubdiv.begin(),nsubdiv.end(), NX );
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
bgeot::base_matrix M(N,N);
for (size_type i=0; i < N; ++i) {
static const char *t[] = {"LX","LY","LZ"};
M(i,i) = (i<3) ? PARAM.real_value(t[i],t[i]) : 1.0;
}
/* scale the unit mesh to [LX,LY,..] and incline it */
mesh.transformation(M);
}
int dv = int(PARAM.int_value("DIRICHLET_VERSION", "Dirichlet version"));
dirichlet_version = size_type(dv);
datafilename=PARAM.string_value("ROOTFILENAME","Base name of data files.");
residual=PARAM.real_value("RESIDUAL"); if (residual == 0.) residual = 1e-10;
FT = PARAM.real_value("FT"); if (FT == 0.0) FT = 1.0;
pressure = PARAM.real_value("pressure") ;
KL = (PARAM.int_value("KL", "Kirchhoff-Love model or not") != 0);
D = PARAM.real_value("D", "Flexion modulus");
if (KL) nu = PARAM.real_value("NU", "Poisson ratio");
boundary_ref = PARAM.int_value("BOUNDARY_REF");
/* set the finite element on the mf_u */
getfem::pfem pf_u = getfem::fem_descriptor(FEM_TYPE);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
mim.set_integration_method(mesh.convex_index(), ppi);
mf_u.set_finite_element(mesh.convex_index(), pf_u);
std::string dirichlet_fem_name = PARAM.string_value("DIRICHLET_FEM_TYPE");
if (dirichlet_fem_name.size() == 0) {
mf_mult.set_finite_element(mesh.convex_index(), pf_u);
cout << "No DIRICHLET_FEM_TYPE\n";
} else {
cout << "DIRICHLET_FEM_TYPE=" << dirichlet_fem_name << "\n";
mf_mult.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(dirichlet_fem_name));
}
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
if (!pf_u->is_lagrange()) {
GMM_ASSERT1(false, "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
}
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
if (boundary_ref == 0) { // clamped plate
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
mesh.region(CLAMPED_BOUNDARY_NUM).add(i.cv(), i.f());
mesh.region(SIMPLE_SUPPORT_BOUNDARY_NUM).add(i.cv(), i.f());
}
}
if (boundary_ref == 1) { // mixed boundary conditions
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
if (gmm::abs(un[N-1] - 1.0) <= 0.5) {
mesh.region(FORCE_BOUNDARY_NUM).add(i.cv(), i.f());
mesh.region(MOMENTUM_BOUNDARY_NUM).add(i.cv(), i.f());
}
else {
mesh.region(SIMPLE_SUPPORT_BOUNDARY_NUM).add(i.cv(), i.f());
if (gmm::abs(un[N-1] + 1.0) <= 0.5)
mesh.region(CLAMPED_BOUNDARY_NUM).add(i.cv(), i.f());
else
mesh.region(MOMENTUM_BOUNDARY_NUM).add(i.cv(), i.f());
}
}
}
if (boundary_ref == 2) { // clamped plate on the left edge, free boundary elsewhere
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
if (un[0] < - 0.5 ) {
mesh.region(CLAMPED_BOUNDARY_NUM).add(i.cv(), i.f());
mesh.region(SIMPLE_SUPPORT_BOUNDARY_NUM).add(i.cv(), i.f());
} else {
mesh.region(FORCE_BOUNDARY_NUM).add(i.cv(), i.f());
mesh.region(MOMENTUM_BOUNDARY_NUM).add(i.cv(), i.f());
}
}
}
}
/* compute the relative error with respect to the exact solution */
void bilaplacian_problem::compute_error(plain_vector &U) {
GMM_ASSERT1(!mf_rhs.is_reduced(), "To be adapted");
std::vector<scalar_type> V(mf_rhs.nb_basic_dof());
getfem::interpolation(mf_u, mf_rhs, U, V);
for (size_type i = 0; i < mf_rhs.nb_basic_dof(); ++i)
V[i] -= sol_u(mf_rhs.point_of_basic_dof(i));
cout.precision(16);
cout << "L2 error = " << getfem::asm_L2_norm(mim, mf_rhs, V) << endl
<< "H1 error = " << getfem::asm_H1_norm(mim, mf_rhs, V) << endl
<< "H2 error = " << getfem::asm_H2_norm(mim, mf_rhs, V) << endl
/*<< "Linfty error = " << gmm::vect_norminf(V) << endl*/;
cout << "semi-norme H1 = " << getfem::asm_H1_semi_norm(mim, mf_rhs, V) << endl
<< "semi-norme H2 = " << getfem::asm_H2_semi_norm(mim, mf_rhs, V) << endl ;
}
/**************************************************************************/
/* Model. */
/**************************************************************************/
bool bilaplacian_problem::solve(plain_vector &U) {
size_type nb_dof_rhs = mf_rhs.nb_dof();
size_type N = mesh.dim();
cout << "Number of dof for u: " << mf_u.nb_dof() << endl;
getfem::model model;
// Main unknown of the problem.
model.add_fem_variable("u", mf_u);
// Bilaplacian brick.
model.add_initialized_scalar_data("D", D);
if (KL) {
model.add_initialized_scalar_data("nu", nu);
getfem::add_bilaplacian_brick_KL(model, mim, "u", "D", "nu");
} else {
getfem::add_bilaplacian_brick(model, mim, "u", "D");
}
// Volumic source term brick.
plain_vector F(nb_dof_rhs);
getfem::interpolation_function(mf_rhs, F, sol_f);
model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(model, mim, "u", "VolumicData");
// Defining the prescribed momentum.
if (KL) {
gmm::resize(F, nb_dof_rhs*N*N);
getfem::interpolation_function(mf_rhs, F,
sol_mtensor, MOMENTUM_BOUNDARY_NUM);
gmm::scale(F, -1.0);
} else {
gmm::resize(F, nb_dof_rhs);
getfem::interpolation_function(mf_rhs, F, sol_lapl_u,
MOMENTUM_BOUNDARY_NUM);
}
// Prescribed momentum on the boundary
model.add_initialized_fem_data("Momentum", mf_rhs, F);
getfem::add_normal_derivative_source_term_brick
(model, mim, "u", "Momentum", MOMENTUM_BOUNDARY_NUM);
// Defining the Neumann condition right hand side.
plain_vector H(nb_dof_rhs*N*N);
gmm::resize(F, nb_dof_rhs*N);
if (KL) {
getfem::interpolation_function(mf_rhs, F,sol_bf,FORCE_BOUNDARY_NUM);
getfem::interpolation_function(mf_rhs, H,sol_mtensor,FORCE_BOUNDARY_NUM);
model.add_initialized_fem_data("M", mf_rhs, F);
model.add_initialized_fem_data("H", mf_rhs, H);
add_Kirchhoff_Love_Neumann_term_brick
(model, mim, "u", "H", "M", FORCE_BOUNDARY_NUM);
}
else {
getfem::interpolation_function(mf_rhs, F,neumann_val,FORCE_BOUNDARY_NUM);
gmm::scale(F, -1.0);
model.add_initialized_fem_data("Neumanndata", mf_rhs, F);
add_normal_source_term_brick
(model, mim, "u", "Neumanndata", FORCE_BOUNDARY_NUM);
}
// Normal derivative Dirichlet condition brick
gmm::resize(F, nb_dof_rhs*N);
gmm::clear(F);
getfem::interpolation_function(mf_rhs, F, sol_du, CLAMPED_BOUNDARY_NUM);
model.add_initialized_fem_data("DerDirdata", mf_rhs, F);
if (dirichlet_version == 0)
add_normal_derivative_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_u, CLAMPED_BOUNDARY_NUM, "DerDirdata", false);
else
add_normal_derivative_Dirichlet_condition_with_penalization
(model, mim, "u", PARAM.real_value("EPS_DIRICHLET_PENAL"),
CLAMPED_BOUNDARY_NUM, "DerDirdata", false);
// Dirichlet condition brick.
gmm::resize(F, nb_dof_rhs);
getfem::interpolation_function
(mf_rhs, F, sol_u, SIMPLE_SUPPORT_BOUNDARY_NUM);
model.add_initialized_fem_data("Dirichletdata", mf_rhs, F);
if (dirichlet_version == 0)
add_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_u, SIMPLE_SUPPORT_BOUNDARY_NUM, "Dirichletdata");
else
add_Dirichlet_condition_with_penalization
(model, mim, "u", PARAM.real_value("EPS_DIRICHLET_PENAL"),
SIMPLE_SUPPORT_BOUNDARY_NUM, "Dirichletdata", &mf_mult);
// Generic solve.
cout << "Total number of variables : " << model.nb_dof() << endl;
gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(model, iter);
gmm::resize(U, mf_u.nb_dof());
gmm::copy(model.real_variable("u"), U);
return (iter.converged());
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv); // For parallelized version
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
try {
bilaplacian_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
plain_vector U(p.mf_u.nb_dof()), V(p.mf_u.nb_dof()) ;
if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");
p.compute_error(U);
if (p.PARAM.int_value("VTK_EXPORT") ) {
cout << "export to " << p.datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(p.datafilename + ".vtk",
p.PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(p.mf_u);
exp.write_point_data(p.mf_u, U, "bilaplacian_displacement");
cout << "export done, you can view the data file with (for example)\n"
<< "mayavi2 -d " << p.datafilename
<< ".vtk -f WarpScalar -m Surface -m Outline\n";
}
}
GMM_STANDARD_CATCH_ERROR;
GETFEM_MPI_FINALIZE;
return 0;
}
|