File: crack.cc

package info (click to toggle)
getfem 5.4.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,640 kB
  • sloc: cpp: 126,151; ansic: 24,798; python: 9,244; sh: 3,648; perl: 1,829; makefile: 1,367
file content (1070 lines) | stat: -rw-r--r-- 39,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/*===========================================================================

 Copyright (C) 2002-2020 Yves Renard, Julien Pommier.

 This file is a part of GetFEM

 GetFEM  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

===========================================================================*/
  
/**
 * Linear Elastostatic problem with a crack.
 *
 * This program is used to check that getfem++ is working. This is also 
 * a good example of use of GetFEM.
 */

#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_export.h"   /* export functions (save solution in a file)  */
#include "getfem/getfem_derivatives.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_mesh_im_level_set.h"
#include "getfem/getfem_mesh_fem_level_set.h"
#include "getfem/getfem_mesh_fem_product.h"
#include "getfem/getfem_mesh_fem_global_function.h"
#include "getfem/getfem_mesh_fem_sum.h"
#include "getfem/getfem_crack_sif.h"
#include "gmm/gmm.h"
#include "gmm/gmm_inoutput.h"

using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
template <typename T> std::ostream &operator <<
  (std::ostream &o, const std::vector<T>& m) { gmm::write(o,m); return o; }

/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node;  /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type;   /* = unsigned long */
using bgeot::dim_type; 
using bgeot::short_type; 
using bgeot::base_matrix; /* small dense matrix. */

/* definition of some matrix/vector types. These ones are built
 * using the predefined types in Gmm++
 */
typedef getfem::model_real_plain_vector  plain_vector;
typedef getfem::model_real_sparse_matrix  sparse_matrix;
typedef gmm::dense_matrix<scalar_type>  dense_matrix;

/**************************************************************************/
/*  Exact solution.                                                       */
/**************************************************************************/

/* returns sin(theta/2) where theta is the angle
   of 0-(x,y) with the axis Ox */
scalar_type sint2(scalar_type x, scalar_type y) {
  scalar_type r = sqrt(x*x+y*y);
  if (r == 0) return 0;
  else return (y<0 ? -1:1) * sqrt(gmm::abs(r-x)/(2*r));
  // sometimes (gcc3.3.2 -O3), r-x < 0 ....
}
scalar_type cost2(scalar_type x, scalar_type y) {
  scalar_type r = sqrt(x*x+y*y);
  if (r == 0) return 0;
  else return sqrt(gmm::abs(r+x)/(2*r));
}
/* analytical solution for a semi-infinite crack [-inf,a] in an
   infinite plane submitted to +sigma above the crack
   and -sigma under the crack. (The crack is directed along the x axis).
   
   nu and E are the poisson ratio and young modulus
   
   solution taken from "an extended finite elt method with high order
   elts for curved cracks", Stazi, Budyn,Chessa, Belytschko
*/

void elasticite2lame(const scalar_type young_modulus,
		     const scalar_type poisson_ratio, 
		     scalar_type& lambda, scalar_type& mu) {
  mu = young_modulus/(2*(1+poisson_ratio));
  lambda = 2*mu*poisson_ratio/(1-poisson_ratio);
}

/* plane stress */
scalar_type young_modulus(scalar_type lambda, scalar_type mu){
  return 4*mu*(lambda + mu)/(lambda+2*mu);
}

void sol_ref_infinite_plane(scalar_type nu, scalar_type E, scalar_type sigma,
			    scalar_type a, scalar_type xx, scalar_type y,
			    base_small_vector& U, int mode,
			    base_matrix *pgrad) {
  scalar_type x  = xx-a; /* the eq are given relatively to the crack tip */
  //scalar_type KI = sigma*sqrt(M_PI*a);
  scalar_type r = std::max(sqrt(x*x+y*y),1e-16);
  scalar_type sqrtr = sqrt(r), sqrtr3 = sqrtr*sqrtr*sqrtr;
  scalar_type cost = x/r, sint = y/r;
  scalar_type theta = atan2(y,x);
  scalar_type s2 = sin(theta/2); //sint2(x,y);
  scalar_type c2 = cos(theta/2); //cost2(x,y);
  // scalar_type c3 = cos(3*theta/2); //4*c2*c2*c2-3*c2; /* cos(3*theta/2) */
  // scalar_type s3 = sin(3*theta/2); //4*s2*c2*c2-s2;  /* sin(3*theta/2) */

  scalar_type lambda, mu;
  elasticite2lame(E,nu,lambda,mu);

  U.resize(2);
  if (pgrad) (*pgrad).resize(2,2);
  scalar_type C= 1./E * (mode == 1 ? 1. : (1+nu));
  if (mode == 1) {
    scalar_type A=2+2*mu/(lambda+2*mu);
    scalar_type B=-2*(lambda+mu)/(lambda+2*mu);
    U[0] = sqrtr/sqrt(2*M_PI) * C * c2 * (A + B*cost);
    U[1] = sqrtr/sqrt(2*M_PI) * C * s2 * (A + B*cost);
    if (pgrad) {
      (*pgrad)(0,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
	* (cost*c2*A-cost*cost*c2*B+sint*s2*A+sint*s2*B*cost+2*c2*B);
      (*pgrad)(1,0) = -C/(2*sqrt(2*M_PI)*sqrtr)
	* (-sint*c2*A+sint*c2*B*cost+cost*s2*A+cost*cost*s2*B);
      (*pgrad)(0,1) = C/(2.*sqrt(2*M_PI)*sqrtr)
	* (cost*s2*A-cost*cost*s2*B-sint*c2*A-sint*c2*B*cost+2*s2*B);
      (*pgrad)(1,1) = C/(2.*sqrt(2*M_PI)*sqrtr)
	* (sint*s2*A-sint*s2*B*cost+cost*c2*A+cost*cost*c2*B);
    }
  } else if (mode == 2) {
    scalar_type C1 = (lambda+3*mu)/(lambda+mu);
    U[0] = sqrtr/sqrt(2*M_PI) * C * s2 * (C1 + 2 + cost);
    U[1] = sqrtr/sqrt(2*M_PI) * C * c2 * (C1 - 2 + cost) * (-1.);
    if (pgrad) {
      (*pgrad)(0,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
	* (cost*s2*C1+2*cost*s2-cost*cost*s2-sint*c2*C1
	   -2*sint*c2-sint*cost*c2+2*s2);
      (*pgrad)(1,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
	* (sint*s2*C1+2*sint*s2-sint*s2*cost+cost*c2*C1
	   +2*cost*c2+cost*cost*c2);
      (*pgrad)(0,1) = -C/(2.*sqrt(2*M_PI)*sqrtr)
	* (cost*c2*C1-2*cost*c2-cost*cost*c2+sint*s2*C1
	   -2*sint*s2+sint*s2*cost+2*c2);
      (*pgrad)(1,1) =  C/(2.*sqrt(2*M_PI)*sqrtr)
	* (-sint*c2*C1+2*sint*c2+sint*cost*c2+cost*s2*C1
	   -2*cost*s2+cost*cost*s2);
    }
  } else if (mode == 100) {
    U[0] = - sqrtr3 * (c2 + 4./3 *(7*mu+3*lambda)/(lambda+mu)*c2*s2*s2
		       -1./3*(7*mu+3*lambda)/(lambda+mu)*c2);
    U[1] = - sqrtr3 * (s2+4./3*(lambda+5*mu)/(lambda+mu)*s2*s2*s2
		       -(lambda+5*mu)/(lambda+mu)*s2);
    if (pgrad) {
      (*pgrad)(0,0) = 2*sqrtr*(-6*cost*c2*mu+7*cost*c2*c2*c2*mu
			       -3*cost*c2*lambda+3*cost*c2*c2*c2*lambda
			       -2*sint*s2*mu
			       +7*sint*s2*c2*c2*mu-sint*s2*lambda
			       +3*sint*s2*c2*c2*lambda)/(lambda+mu);
      (*pgrad)(1,0) = -2*sqrtr*(6*sint*c2*mu-7*sint*c2*c2*c2*mu
				+3*sint*c2*lambda-3*sint*c2*c2*c2*lambda
				-2*cost*s2*mu
				+7*cost*s2*c2*c2*mu-cost*s2*lambda
				+3*cost*s2*c2*c2*lambda)/(lambda+mu);
      (*pgrad)(0,1) = 2*sqrtr*(-2*cost*s2*mu-cost*s2*lambda
			       +cost*s2*c2*c2*lambda+5*cost*s2*c2*c2*mu
			       +4*sint*c2*mu
			       +sint*c2*lambda-sint*c2*c2*c2*lambda
			       -5*sint*c2*c2*c2*mu)/(lambda+mu);
      (*pgrad)(1,1) = 2*sqrtr*(-2*sint*s2*mu-sint*s2*lambda
			       +sint*s2*c2*c2*lambda+5*sint*s2*c2*c2*mu
			       -4*cost*c2*mu
			       -cost*c2*lambda+cost*c2*c2*c2*lambda
			       +5*cost*c2*c2*c2*mu)/(lambda+mu);
    }
  } else if (mode == 101) {
    U[0] = -4*sqrtr3*s2*(-lambda-2*mu+7*lambda*c2*c2
			 +11*mu*c2*c2)/(3*lambda-mu);
    U[1] = -4*sqrtr3*c2*(-3*lambda+3*lambda*c2*c2-mu*c2*c2)/(3*lambda-mu);
    if (pgrad) {
      (*pgrad)(0,0) = -6*sqrtr*(-cost*s2*lambda-2*cost*s2*mu
				+7*cost*s2*lambda*c2*c2
				+11*cost*s2*mu*c2*c2+5*sint*c2*lambda
				+8*sint*c2*mu-7*sint*c2*c2*c2*lambda
				-11*sint*c2*c2*c2*mu)/(3*lambda-mu);
      (*pgrad)(1,0) = -6*sqrtr*(-sint*s2*lambda-2*sint*s2*mu
				+7*sint*s2*lambda*c2*c2
				+11*sint*s2*mu*c2*c2-5*cost*c2*lambda
				-8*cost*c2*mu+7*cost*c2*c2*c2*lambda
				+11*cost*c2*c2*c2*mu)/(3*lambda-mu);
      (*pgrad)(0,1) = -6*sqrtr*(-3*cost*c2*lambda+3*cost*c2*c2*c2*lambda
				-cost*c2*c2*c2*mu-sint*s2*lambda
				+3*sint*s2*lambda*c2*c2
				-sint*s2*mu*c2*c2)/(3*lambda-mu);
      (*pgrad)(1,1) = 6*sqrtr*(3*sint*c2*lambda
			       -3*sint*c2*c2*c2*lambda+sint*c2*c2*c2*mu
			       -cost*s2*lambda+3*cost*s2*lambda*c2*c2
			       -cost*s2*mu*c2*c2)/(3*lambda-mu);
    }

  } else if (mode == 10166666) {

    U[0] = 4*sqrtr3*s2*(-lambda+lambda*c2*c2-3*mu*c2*c2)/(lambda-3*mu);
    U[1] = 4*sqrtr3*c2*(-3*lambda-6*mu+5*lambda*c2*c2+9*mu*c2*c2)/(lambda-3*mu);
    if (pgrad) {
      (*pgrad)(0,0) = 6*sqrtr*(-cost*s2*lambda+cost*s2*lambda*c2*c2-
			       3*cost*s2*mu*c2*c2-2*sint*c2*mu+sint*c2*lambda-
			       sint*c2*c2*c2*lambda
			       +3*sint*c2*c2*c2*mu)/(lambda-3*mu);
      (*pgrad)(1,0) = 6*sqrtr*(-sint*s2*lambda+sint*s2*lambda*c2*c2-
			       3*sint*s2*mu*c2*c2+2*cost*c2*mu-cost*c2*lambda+
			       cost*c2*c2*c2*lambda
			       -3*cost*c2*c2*c2*mu)/(lambda-3*mu);
      (*pgrad)(0,1) = 6*sqrtr*(-3*cost*c2*lambda-6*cost*c2*mu
			       +5*cost*c2*c2*c2*lambda+
			       9*cost*c2*c2*c2*mu-sint*s2*lambda-2*sint*s2*mu+
			       5*sint*s2*lambda*c2*c2
			       +9*sint*s2*mu*c2*c2)/(lambda-3*mu);
      (*pgrad)(1,1) = -6*sqrtr*(3*sint*c2*lambda+6*sint*c2*mu
				-5*sint*c2*c2*c2*lambda-
				9*sint*c2*c2*c2*mu-cost*s2*lambda-2*cost*s2*mu+
				5*cost*s2*lambda*c2*c2
				+9*cost*s2*mu*c2*c2)/(lambda-3*mu);
    }
  } else GMM_ASSERT1(false, "Unvalid mode");
  if (!std::isfinite(U[0]))
    cerr << "raaah not a number ... nu=" << nu << ", E=" << E << ", sig="
	 << sigma << ", a=" << a << ", xx=" << xx << ", y=" << y << ", r="
	 << r << ", sqrtr=" << sqrtr << ", cost=" << cost << ", U=" << U[0]
	 << "," << U[1] << endl;
  assert(std::isfinite(U[0]));
  assert(std::isfinite(U[1]));
}

struct exact_solution {
  getfem::mesh_fem_global_function mf;
  getfem::base_vector U;

  exact_solution(getfem::mesh &me) : mf(me) {}
  
  void init(int mode, scalar_type lambda, scalar_type mu,
	    getfem::level_set &ls) {
    std::vector<getfem::pglobal_function> cfun(4);
    for (unsigned j=0; j < 4; ++j) {
      auto s = std::make_shared<getfem::crack_singular_xy_function>(j);
      cfun[j] = getfem::global_function_on_level_set(ls, s);
    }

    mf.set_functions(cfun);
    
    mf.set_qdim(1);

    U.resize(8); assert(mf.nb_dof() == 4);
    getfem::base_vector::iterator it = U.begin();
    scalar_type coeff=0.;
    switch(mode) {
      case 1: {
	scalar_type A=2+2*mu/(lambda+2*mu), B=-2*(lambda+mu)/(lambda+2*mu);
	/* "colonne" 1: ux, colonne 2: uy */
	*it++ = 0;       *it++ = A-B; /* sin(theta/2) */
	*it++ = A+B;     *it++ = 0;   /* cos(theta/2) */
	*it++ = -B;      *it++ = 0;   /* sin(theta/2)*sin(theta) */ 
	*it++ = 0;       *it++ = B;   /* cos(theta/2)*cos(theta) */
	coeff = 1/sqrt(2*M_PI);
      } break;
      case 2: {
	scalar_type C1 = (lambda+3*mu)/(lambda+mu); 
	*it++ = C1+2-1;   *it++ = 0;
	*it++ = 0;      *it++ = -(C1-2+1);
	*it++ = 0;      *it++ = 1;
	*it++ = 1;      *it++ = 0;
	coeff = 2*(mu+lambda)/(lambda+2*mu)/sqrt(2*M_PI);
      } break;
      default:
	GMM_ASSERT1(false, "Unvalid mode");
	break;
    }
    gmm::scale(U, coeff/young_modulus(lambda,mu));
  }
};

base_small_vector sol_f(const base_node &x) {
  int N = x.size();
  base_small_vector res(N);
  return res;
}


/**************************************************************************/
/*  Structure for the crack problem.                                      */
/**************************************************************************/

struct crack_problem {

  enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1,
	 MORTAR_BOUNDARY_IN=42, MORTAR_BOUNDARY_OUT=43 };
  getfem::mesh mesh;  /* the mesh */
  getfem::mesh_level_set mls;       /* the integration methods.              */
  getfem::mesh_im_level_set mim;    /* the integration methods.              */
  getfem::mesh_fem mf_pre_u, mf_pre_mortar;
  getfem::mesh_fem mf_mult;
  getfem::mesh_fem_level_set mfls_u, mfls_mortar; 
  getfem::mesh_fem_global_function mf_sing_u;
  getfem::mesh_fem mf_partition_of_unity;
  getfem::mesh_fem_product mf_product;
  getfem::mesh_fem_sum mf_u_sum;
  getfem::mesh_fem mf_us;

  getfem::mesh_fem& mf_u() { return mf_u_sum; }
  
  scalar_type lambda, mu;    /* Lame coefficients.                */
  getfem::mesh_fem mf_rhs;   /* mesh_fem for the right hand side (f(x),..)   */
  getfem::mesh_fem mf_p;     /* mesh_fem for the pressure for mixed form     */
  exact_solution exact_sol;
  
  getfem::level_set ls;      /* The two level sets defining the crack.       */
  getfem::level_set ls2, ls3; /* The two level-sets defining the add. cracks.*/

  dal::bit_vector pm_convexes; /* convexes inside the enrichment 
				  area when point-wise matching is used.*/

  base_small_vector translation;

  scalar_type residual;      /* max residual for the iterative solvers      */
  bool mixed_pressure, add_crack;
  unsigned dir_with_mult;
  int mode;
  size_type ind_first_global_dof;
  
  scalar_type enr_area_radius;
  struct cutoff_param {
    scalar_type radius, radius1, radius0;
    size_type fun_num;
  };
  cutoff_param cutoff;

  typedef enum { NO_ENRICHMENT=0, 
		 FIXED_ZONE=1, 
		 GLOBAL_WITH_MORTAR=2,
		 GLOBAL_WITH_CUTOFF=3 } enrichment_option_enum;
  enrichment_option_enum enrichment_option;
  bool vectorial_enrichment;
  dense_matrix Qsing;

  std::string datafilename;
  
  std::string GLOBAL_FUNCTION_MF, GLOBAL_FUNCTION_U;

  bgeot::md_param PARAM;

  bool solve(plain_vector &U);
  void compute_sif(const plain_vector &U);
  void init(void);
  crack_problem(void) : mls(mesh), mim(mls), 
			mf_pre_u(mesh), mf_pre_mortar(mesh), mf_mult(mesh),
			mfls_u(mls, mf_pre_u), mfls_mortar(mls, mf_pre_mortar),
			mf_sing_u(mesh),
			mf_partition_of_unity(mesh),
			mf_product(mf_partition_of_unity, mf_sing_u),

			mf_u_sum(mesh), mf_us(mesh), mf_rhs(mesh), mf_p(mesh),
			exact_sol(mesh),
			ls(mesh, 1, true), ls2(mesh, 1, true),
			ls3(mesh, 1, true), Qsing(8,8) {}

};


std::string name_of_dof(getfem::pdof_description dof) {
  char s[200];
  snprintf(s, 199, "UnknownDof[%p]", (void*)dof);
  for (dim_type d = 0; d < 4; ++d) {
    if (dof == getfem::lagrange_dof(d)) {
      snprintf(s, 199, "Lagrange[%d]", d); goto found;
    }
    if (dof == getfem::normal_derivative_dof(d)) {
      snprintf(s, 199, "D_n[%d]", d); goto found;
    }
    if (dof == getfem::global_dof(d)) {
      snprintf(s, 199, "GlobalDof[%d]", d);
    }
    if (dof == getfem::mean_value_dof(d)) {
      snprintf(s, 199, "MeanValue[%d]", d);
    }
    if (getfem::dof_xfem_index(dof) != 0) {
      snprintf(s, 199, "Xfem[idx:%d]", int(dof_xfem_index(dof)));
    }
    
    for (dim_type r = 0; r < d; ++r) {
      if (dof == getfem::derivative_dof(d, r)) {
	snprintf(s, 199, "D_%c[%d]", "xyzuvw"[r], d); goto found;
      }
      for (dim_type t = 0; t < d; ++t) {
	if (dof == getfem::second_derivative_dof(d, r, t)) {
	  snprintf(s, 199, "D2%c%c[%d]", "xyzuvw"[r], "xyzuvw"[t], d); 
	  goto found;
	}
      }
    }
  }
 found:
  return s;
}


/* Read parameters from the .param file, build the mesh, set finite element
 * and integration methods and selects the boundaries.
 */
void crack_problem::init(void) {
  std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
  std::string FEM_TYPE  = PARAM.string_value("FEM_TYPE","FEM name");
  std::string INTEGRATION = PARAM.string_value("INTEGRATION",
					       "Name of integration method");
  std::string SIMPLEX_INTEGRATION = PARAM.string_value("SIMPLEX_INTEGRATION",
					 "Name of simplex integration method");
  std::string SINGULAR_INTEGRATION = PARAM.string_value("SINGULAR_INTEGRATION");

  add_crack = (PARAM.int_value("ADDITIONAL_CRACK", "An additional crack ?") != 0);
  enrichment_option = 
    enrichment_option_enum(PARAM.int_value("ENRICHMENT_OPTION",
			   "Enrichment option"));
  vectorial_enrichment = (PARAM.int_value("VECTORIAL_ENRICHMENT",
					  "Vectorial enrichment option") != 0);
  cout << "MESH_TYPE=" << MESH_TYPE << "\n";
  cout << "FEM_TYPE="  << FEM_TYPE << "\n";
  cout << "INTEGRATION=" << INTEGRATION << "\n";

  translation.resize(2); 
  translation[0] =0.5;
  translation[1] =0.;
  
  /* First step : build the mesh */
  bgeot::pgeometric_trans pgt = 
    bgeot::geometric_trans_descriptor(MESH_TYPE);
  size_type N = pgt->dim();
  std::vector<size_type> nsubdiv(N);
  std::fill(nsubdiv.begin(),nsubdiv.end(),
	    PARAM.int_value("NX", "Nomber of space steps "));
  getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
			    PARAM.int_value("MESH_NOISED") != 0);
  base_small_vector tt(N); tt[1] = -0.5;
  mesh.translation(tt); 
  
  datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
  residual = PARAM.real_value("RESIDUAL");
  if (residual == 0.) residual = 1e-10;
  enr_area_radius = PARAM.real_value("RADIUS_ENR_AREA",
				     "radius of the enrichment area");
  
  mu = PARAM.real_value("MU", "Lame coefficient mu");
  lambda = PARAM.real_value("LAMBDA", "Lame coefficient lambda");

  cutoff.fun_num = PARAM.int_value("CUTOFF_FUNC", "cutoff function");
  cutoff.radius = PARAM.real_value("CUTOFF", "Cutoff");
  cutoff.radius1 = PARAM.real_value("CUTOFF1", "Cutoff1");
  cutoff.radius0 = PARAM.real_value("CUTOFF0", "Cutoff0");
  mf_u().set_qdim(dim_type(N));

  /* set the finite element on the mf_u */
  getfem::pfem pf_u = 
    getfem::fem_descriptor(FEM_TYPE);
  getfem::pintegration_method ppi = 
    getfem::int_method_descriptor(INTEGRATION);
  getfem::pintegration_method simp_ppi = 
    getfem::int_method_descriptor(SIMPLEX_INTEGRATION);
  getfem::pintegration_method sing_ppi = (SINGULAR_INTEGRATION.size() ?
		getfem::int_method_descriptor(SINGULAR_INTEGRATION) : 0);
  
  mim.set_integration_method(mesh.convex_index(), ppi);
  mls.add_level_set(ls);
  if (add_crack) { mls.add_level_set(ls2); mls.add_level_set(ls3); }

  mim.set_simplex_im(simp_ppi, sing_ppi);
  mf_pre_u.set_finite_element(mesh.convex_index(), pf_u);
  mf_pre_mortar.set_finite_element(mesh.convex_index(), 
				   getfem::fem_descriptor(PARAM.string_value("MORTAR_FEM_TYPE")));
  mf_mult.set_finite_element(mesh.convex_index(), pf_u);
  mf_mult.set_qdim(dim_type(N));
  mf_partition_of_unity.set_classical_finite_element(1);
  
  mixed_pressure =
    (PARAM.int_value("MIXED_PRESSURE","Mixed version or not.") != 0);
  mode = int(PARAM.int_value("MODE","Mode for the reference solution"));
  dir_with_mult = unsigned(PARAM.int_value("DIRICHLET_VERSION", "Dirichlet version"));
  if (mixed_pressure) {
    std::string FEM_TYPE_P  = PARAM.string_value("FEM_TYPE_P","FEM name P");
    mf_p.set_finite_element(mesh.convex_index(),
			    getfem::fem_descriptor(FEM_TYPE_P));
  }

  /* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
     not used in the .param file */
  std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
  if (data_fem_name.size() == 0) {
    if (!pf_u->is_lagrange()) {
      GMM_ASSERT1(false, "You are using a non-lagrange FEM. "
		  << "In that case you need to set "
		  << "DATA_FEM_TYPE in the .param file");
    }
    mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
  } else {
    mf_rhs.set_finite_element(mesh.convex_index(), 
			      getfem::fem_descriptor(data_fem_name));
  }
  
  /* set boundary conditions
   * (Neuman on the upper face, Dirichlet elsewhere) */
  cout << "Selecting Neumann and Dirichlet boundaries\n";
  getfem::mesh_region border_faces;
  getfem::outer_faces_of_mesh(mesh, border_faces);
  for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
    
    base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
    un /= gmm::vect_norm2(un);
    mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
  }
  
  exact_sol.init(mode, lambda, mu, ls);
}


base_small_vector ls_function(const base_node P, int num = 0) {
  scalar_type x = P[0], y = P[1];
  base_small_vector res(2);
  switch (num) {
    case 0: {
      res[0] = y;
      res[1] = -.5 + x;
    } break;
    case 1: {
      res[0] = gmm::vect_dist2(P, base_node(0.5, 0.)) - .25;
      res[1] = gmm::vect_dist2(P, base_node(0.25, 0.0)) - 0.27;
    } break;
    case 2: {
      res[0] = x - 0.25;
      res[1] = gmm::vect_dist2(P, base_node(0.25, 0.0)) - 0.35;
    } break;
    default: assert(0);
  }
  return res;
}

bool crack_problem::solve(plain_vector &U) {
  size_type N = mesh.dim();
  ls.reinit();  
  for (size_type d = 0; d < ls.get_mesh_fem().nb_basic_dof(); ++d) {
    ls.values(0)[d] = ls_function(ls.get_mesh_fem().point_of_basic_dof(d), 0)[0];
    ls.values(1)[d] = ls_function(ls.get_mesh_fem().point_of_basic_dof(d), 0)[1];
  }
  ls.touch();

  if (add_crack) {
    ls2.reinit();
    for (size_type d = 0; d < ls2.get_mesh_fem().nb_basic_dof(); ++d) {
      ls2.values(0)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 1)[0];
      ls2.values(1)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 1)[1];
    }
    ls2.touch();
    
    ls3.reinit();
    for (size_type d = 0; d < ls3.get_mesh_fem().nb_basic_dof(); ++d) {
      ls3.values(0)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 2)[0];
      ls3.values(1)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 2)[1];
    }
    ls3.touch(); 
  }

  mls.adapt();
  mim.adapt();
  mfls_u.adapt();
  mfls_mortar.adapt(); mfls_mortar.set_qdim(2);

  cout << "Setting up the singular functions for the enrichment\n";
  std::vector<getfem::pglobal_function> vfunc(4);
  for (size_type i = 0; i < vfunc.size(); ++i) {
    /* use the singularity */
    getfem::pxy_function
      s = std::make_shared<getfem::crack_singular_xy_function>(unsigned(i));
    if (enrichment_option != FIXED_ZONE && 
	enrichment_option != GLOBAL_WITH_MORTAR) {
      /* use the product of the singularity function
	 with a cutoff */
      getfem::pxy_function c
	= std::make_shared<getfem::cutoff_xy_function>
	(int(cutoff.fun_num), cutoff.radius, cutoff.radius1, cutoff.radius0);
      s = std::make_shared<getfem::product_of_xy_functions>(s, c);
    }
    vfunc[i] = getfem::global_function_on_level_set(ls, s);
  }
  
  mf_sing_u.set_functions(vfunc);

  switch (enrichment_option) {


    case FIXED_ZONE: {
      dal::bit_vector enriched_dofs;
      plain_vector X(mf_partition_of_unity.nb_dof());
      plain_vector Y(mf_partition_of_unity.nb_dof());
      getfem::interpolation(ls.get_mesh_fem(), mf_partition_of_unity,
			    ls.values(1), X);
      getfem::interpolation(ls.get_mesh_fem(), mf_partition_of_unity,
			    ls.values(0), Y);
      for (size_type j = 0; j < mf_partition_of_unity.nb_dof(); ++j) {
	if (gmm::sqr(X[j]) + gmm::sqr(Y[j]) <= gmm::sqr(enr_area_radius))
	  enriched_dofs.add(j);
      }
      if (enriched_dofs.card() < 3)
	GMM_WARNING0("There is " << enriched_dofs.card() <<
		     " enriched dofs for the crack tip");
      mf_product.set_enrichment(enriched_dofs);
      mf_u_sum.set_mesh_fems(mf_product, mfls_u);
    } break;

    case GLOBAL_WITH_MORTAR: {
      // Selecting the element in the enriched domain

      dal::bit_vector cvlist_in_area;
      dal::bit_vector cvlist_out_area;
      for (dal::bv_visitor cv(mesh.convex_index()); 
	   !cv.finished(); ++cv) {
	bool in_area = true;
	/* For each element, we test all of its nodes. 
	   If all the nodes are inside the enrichment area,
	   then the element is completly inside the area too */ 
	for (unsigned j=0; j < mesh.nb_points_of_convex(cv); ++j) {
	  if (gmm::sqr(mesh.points_of_convex(cv)[j][0] - translation[0]) + 
	      gmm::sqr(mesh.points_of_convex(cv)[j][1] - translation[1]) > 
	      gmm::sqr(enr_area_radius)) {
	    in_area = false; break;
	  }
	}

	/* "remove" the global function on convexes outside the enrichment
	   area */
	if (!in_area) {
	  cvlist_out_area.add(cv);
	  mf_sing_u.set_finite_element(cv, 0);
	  mf_u().set_dof_partition(cv, 1);
	} else cvlist_in_area.add(cv);
      }

      /* extract the boundary of the enrichment area, from the
	 "inside" point-of-view, and from the "outside"
	 point-of-view */
      getfem::mesh_region r_border, r_enr_out;
      getfem::outer_faces_of_mesh(mesh, r_border);

      getfem::outer_faces_of_mesh(mesh, cvlist_in_area, 
				  mesh.region(MORTAR_BOUNDARY_IN));
      getfem::outer_faces_of_mesh(mesh, cvlist_out_area, 
				  mesh.region(MORTAR_BOUNDARY_OUT));
      for (getfem::mr_visitor v(r_border); !v.finished(); ++v) {
	mesh.region(MORTAR_BOUNDARY_OUT).sup(v.cv(), v.f());
      }
      mf_u_sum.set_mesh_fems(mf_sing_u, mfls_u);
    } break;

    case GLOBAL_WITH_CUTOFF :{
      if(cutoff.fun_num == getfem::cutoff_xy_function::EXPONENTIAL_CUTOFF)
	cout<<"Using exponential Cutoff..."<<endl;
      else
	cout<<"Using Polynomial Cutoff..."<<endl;
      mf_u_sum.set_mesh_fems(mf_sing_u, mfls_u);
    } break;

    case NO_ENRICHMENT: {
      mf_u_sum.set_mesh_fems(mfls_u); 
    } break;
  
  }


  gmm::clear(Qsing); gmm::resize(Qsing, 8, 8);
  ind_first_global_dof = size_type(-1);
  
  if (enrichment_option == GLOBAL_WITH_MORTAR
      || enrichment_option == GLOBAL_WITH_CUTOFF) {
    // compute a base to the orthogonal to the mode I and mode II in the
    // linear combination of singular function in order to reduce the problem
    // on a vectorial enrichment with only two dofs.

    exact_solution es1(mesh), es2(mesh);
    es1.init(1, lambda, mu, ls);
    es2.init(2, lambda, mu, ls);

    gmm::copy(gmm::identity_matrix(), Qsing);
    gmm::copy(es1.U, gmm::mat_col(Qsing, 0));
    gmm::copy(es2.U, gmm::mat_col(Qsing, 1));
    gmm::lu_inverse(Qsing);

    // Search the position of the singular enrichment dofs.
    GMM_ASSERT1(!mf_u().is_reduced(), "To be adapted");
    size_type Qdim = mf_u().get_qdim();
    for (dal::bv_visitor cv(mesh.convex_index());
	 !cv.finished() && (ind_first_global_dof == size_type(-1)); ++cv) {
      getfem::pfem pf = mf_u().fem_of_element(cv);
      for (size_type i = 0; i < pf->nb_dof(cv); ++i) {
	// cout << "type of dof : " << name_of_dof(pf->dof_types()[i]) << endl;
	if (pf->dof_types()[i] == getfem::global_dof(mesh.dim())) {
	  if (ind_first_global_dof == size_type(-1))
	    ind_first_global_dof =  mf_u().ind_basic_dof_of_element(cv)[i*Qdim];
	}
      }
    }
      
    cout << "first global dof = " << ind_first_global_dof << endl;
    GMM_ASSERT1(ind_first_global_dof != size_type(-1), "internal error");
  }

  

  U.resize(mf_u().nb_dof());

  if (mixed_pressure) cout << "Number of dof for P: " << mf_p.nb_dof() << endl;
  cout << "Number of dof for u: " << mf_u().nb_dof() << endl;
  
  // Model description.
  getfem::model model;

  // Main unknown of the problem.
  model.add_fem_variable("u", mf_u());

  // Linearized elasticity brick.
  model.add_initialized_fixed_size_data
    ("lambda", plain_vector(1, mixed_pressure ? 0.0 : lambda));
  model.add_initialized_fixed_size_data("mu", plain_vector(1, mu));
  getfem::add_isotropic_linearized_elasticity_brick
    (model, mim, "u", "lambda", "mu");

  // Linearized incompressibility condition brick.
  if (mixed_pressure) {
    model.add_initialized_fixed_size_data
      ("incomp_coeff", plain_vector(1, 1.0/lambda));
    model.add_fem_variable("p", mf_p); // Adding the pressure as a variable
    add_linear_incompressibility
      (model, mim, "u", "p", size_type(-1), "incomp_coeff");
  }

  if (vectorial_enrichment && (enrichment_option == GLOBAL_WITH_MORTAR
			       || enrichment_option == GLOBAL_WITH_CUTOFF)) {

    sparse_matrix BB(6, mf_u().nb_dof());
    gmm::copy(gmm::sub_matrix(Qsing, gmm::sub_interval(2,6),
			      gmm::sub_interval(0,8)),
	      gmm::sub_matrix(BB, gmm::sub_interval(0,6),
			      gmm::sub_interval(ind_first_global_dof, 8)));
    model.add_fixed_size_variable("mult_spec", 6);
    add_constraint_with_multipliers(model,"u","mult_spec",BB,plain_vector(6));
  }

  // Volumic source term.
  std::vector<scalar_type> F(mf_rhs.nb_dof()*N);
  getfem::interpolation_function(mf_rhs, F, sol_f);
  model.add_initialized_fem_data("VolumicData", mf_rhs, F);
  getfem::add_source_term_brick(model, mim, "u", "VolumicData");

  // Dirichlet condition.
  model.add_initialized_fem_data("DirichletData", exact_sol.mf, exact_sol.U);

  if (!dir_with_mult)
    getfem::add_Dirichlet_condition_with_multipliers
      (model, mim, "u", mf_mult, DIRICHLET_BOUNDARY_NUM, "DirichletData");
  else
    getfem::add_Dirichlet_condition_with_penalization
      (model, mim, "u", 1e12, DIRICHLET_BOUNDARY_NUM, "DirichletData");

  if (enrichment_option == GLOBAL_WITH_MORTAR) {
    /* add a constraint brick for the mortar junction between
       the enriched area and the rest of the mesh */
    /* we use mfls_u as the space of lagrange multipliers */
    getfem::mesh_fem &mf_mortar = mfls_mortar; 
    /* adjust its qdim.. this is just evil and dangerous
       since mf_u() is built upon mfls_u.. it would be better
       to use a copy. */
    mf_mortar.set_qdim(2); // EVIL 

    cout << "Handling mortar junction\n";

    /* list of dof of mf_mortar for the mortar condition */
    std::vector<size_type> ind_mortar;
    /* unfortunately , dof_on_region sometimes returns too much dof
       when mf_mortar is an enriched one so we have to filter them */
    GMM_ASSERT1(!mf_mortar.is_reduced(), "To be adapted");
    sparse_matrix M(mf_mortar.nb_dof(), mf_mortar.nb_dof());
    getfem::asm_mass_matrix(M, mim, mf_mortar, MORTAR_BOUNDARY_OUT);
    
    for (dal::bv_visitor_c d(mf_mortar.basic_dof_on_region(MORTAR_BOUNDARY_OUT)); 
	 !d.finished(); ++d) {
      if (M(d,d) > 1e-8) ind_mortar.push_back(d);
      else cout << "  removing non mortar dof" << d << "\n";
    }

    cout << ind_mortar.size() << " dof for the lagrange multiplier)\n";

    sparse_matrix H0(mf_mortar.nb_dof(), mf_u().nb_dof()), 
      H(ind_mortar.size(), mf_u().nb_dof());


    gmm::sub_index sub_i(ind_mortar);
    gmm::sub_interval sub_j(0, mf_u().nb_dof());
    
    /* build the mortar constraint matrix -- note that the integration
       method is conformal to the crack
     */
    getfem::asm_mass_matrix(H0, mim, mf_mortar, mf_u(), MORTAR_BOUNDARY_OUT);   
    gmm::copy(gmm::sub_matrix(H0, sub_i, sub_j), H);

    gmm::clear(H0);
    getfem::asm_mass_matrix(H0, mim, mf_mortar, mf_u(), 
			    MORTAR_BOUNDARY_IN);
    gmm::add(gmm::scaled(gmm::sub_matrix(H0, sub_i, sub_j), -1.0), H);


    /* because of the discontinuous partition of mf_u(), some levelset
       enriched functions do not contribute any more to the
       mass-matrix (the ones which are null on one side of the
       levelset, when split in two by the mortar partition, may create
       a "null" dof whose base function is all zero..
    */
    sparse_matrix M2(mf_u().nb_dof(), mf_u().nb_dof());
    getfem::asm_mass_matrix(M2, mim, mf_u(), mf_u());

    for (size_type d = 0; d < mf_u().nb_dof(); ++d) {
      if (M2(d,d) < 1e-10) {
	cout << "  removing null mf_u() dof " << d << "\n";
	size_type n = gmm::mat_nrows(H);
	gmm::resize(H, n+1, gmm::mat_ncols(H));
	H(n, d) = 1;
      }
    }
    
    model.add_fixed_size_variable("mult_mortar", gmm::mat_nrows(H));
    add_constraint_with_multipliers(model,"u","mult_mortar", H,
				    plain_vector(gmm::mat_nrows(H)));
  }

   
  // Generic solve.
  cout << "Total number of variables : " << model.nb_dof() << endl;
  gmm::iteration iter(residual, 1, 40000);
  getfem::standard_solve(model, iter);
  
  // Solution extraction
  gmm::copy(model.real_variable("u"), U);
  
  return (iter.converged());
}

void crack_problem::compute_sif(const plain_vector &U) {
  cout << "Computing stress intensity factors\n";
  base_node tip; base_small_vector T, N;
  getfem::get_crack_tip_and_orientation(ls, tip, T, N);
  cout << "crack tip is : " << tip << ", T=" << T << ", N=" << N << "\n";
  cout << "young modulus: " << young_modulus(lambda, mu) << "\n";
  scalar_type ring_radius = 0.2;
  
  scalar_type KI, KII;
  estimate_crack_stress_intensity_factors(ls, mf_u(), U, 
                                          young_modulus(lambda, mu), 
                                          KI, KII, 1e-2);
  cout << "estimation of crack SIF: " << KI << ", " << KII << "\n";
  
  compute_crack_stress_intensity_factors(ls, mim, mf_u(), U, ring_radius, 
                                         lambda, mu, 
                                         young_modulus(lambda, mu), 
                                         KI, KII);
  cout << "computation of crack SIF: " << KI << ", " << KII << "\n";


  if (enrichment_option == GLOBAL_WITH_CUTOFF
      || enrichment_option == GLOBAL_WITH_MORTAR) {
    /* Compare the computed coefficients of the global functions with
     * the exact one.
     */
    plain_vector diff(8);
    gmm::copy(gmm::sub_vector(U,gmm::sub_interval(ind_first_global_dof, 8)),
	      diff);
    cout << "GLOBAPPROX = " << diff << endl;
    cout << "GLOBEXACT = " << exact_sol.U << endl;
    
    if (!vectorial_enrichment) {
      gmm::add(gmm::scaled(exact_sol.U, -1.0),diff);
      cout << "euclidean error %: " << 100.0*gmm::vect_norm2(diff)/gmm::vect_norm2(exact_sol.U) << endl;
    }
    else {
      plain_vector rr(8);
      gmm::mult(Qsing, diff, rr);
      cout << "KIh = " << rr[0] << "  KIIh = " << rr[1] << endl;
    }
  }
}

/**************************************************************************/
/*  main program.                                                         */
/**************************************************************************/

int main(int argc, char *argv[]) {

  GETFEM_MPI_INIT(argc, argv);
  GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
  FE_ENABLE_EXCEPT;        // Enable floating point exception for Nan.

  //getfem::getfem_mesh_level_set_noisy();


  try {
    crack_problem p;
    p.PARAM.read_command_line(argc, argv);
    p.init();
    p.mesh.write_to_file(p.datafilename + ".mesh");

    plain_vector U(p.mf_u().nb_dof());
    if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");

    p.compute_sif(U);
    
    { 
      getfem::mesh mcut;
      p.mls.global_cut_mesh(mcut);
      dim_type Q = p.mf_u().get_qdim();
      getfem::mesh_fem mf(mcut, Q);
      mf.set_classical_discontinuous_finite_element(2, 0.001);
      // mf.set_finite_element
      //	(getfem::fem_descriptor("FEM_PK_DISCONTINUOUS(2, 2, 0.0001)"));
      plain_vector V(mf.nb_dof());

      /*for (unsigned i=0; i < p.mf_u().nb_dof(); ++i) {
	cout << "dof " << i << ": " << p.mf_u().point_of_dof(i);
      }
      gmm::fill_random(U);*/

      getfem::interpolation(p.mf_u(), mf, U, V);

      getfem::stored_mesh_slice sl;
      getfem::mesh mcut_refined;

      unsigned NX = unsigned(p.PARAM.int_value("NX")), nn;
      if (NX < 6) nn = 8;
      else if (NX < 12) nn = 8;
      else if (NX < 30) nn = 3;
      else nn = 1;

      /* choose an adequate slice refinement based on the distance to the crack tip */
      std::vector<bgeot::short_type> nrefine(mcut.convex_index().last_true()+1);
      for (dal::bv_visitor cv(mcut.convex_index()); !cv.finished(); ++cv) {
	scalar_type dmin=0, d;
	base_node Pmin,P;
	for (unsigned i=0; i < mcut.nb_points_of_convex(cv); ++i) {
	  P = mcut.points_of_convex(cv)[i];
	  d = gmm::vect_norm2(ls_function(P));
	  if (d < dmin || i == 0) { dmin = d; Pmin = P; }
	}

	if (dmin < 1e-5)
	  nrefine[cv] = short_type(nn*4);
	else if (dmin < .1) 
	  nrefine[cv] = short_type(nn*2);
	else nrefine[cv] = short_type(nn);
	if (dmin < .01)
	  cout << "cv: "<< cv << ", dmin = " << dmin
	       << "Pmin=" << Pmin << " " << nrefine[cv] << "\n";
      }

      {
	getfem::mesh_slicer slicer(mcut); 
	getfem::slicer_build_mesh bmesh(mcut_refined);
	slicer.push_back_action(bmesh);
	slicer.exec(nrefine, getfem::mesh_region::all_convexes());
      }
      /*
      sl.build(mcut, 
      getfem::slicer_build_mesh(mcut_refined), nrefine);*/

      getfem::mesh_im mim_refined(mcut_refined); 
      mim_refined.set_integration_method(getfem::int_method_descriptor
					 ("IM_TRIANGLE(6)"));

      getfem::mesh_fem mf_refined(mcut_refined, dim_type(Q));
      mf_refined.set_classical_discontinuous_finite_element(2, 0.0001);
      plain_vector W(mf_refined.nb_dof());

      getfem::interpolation(p.mf_u(), mf_refined, U, W);

      p.exact_sol.mf.set_qdim(dim_type(Q));
      assert(p.exact_sol.mf.nb_dof() == p.exact_sol.U.size());
      plain_vector EXACT(mf_refined.nb_dof());
      getfem::interpolation(p.exact_sol.mf, mf_refined, 
			    p.exact_sol.U, EXACT);

      plain_vector DIFF(EXACT); gmm::add(gmm::scaled(W,-1),DIFF);

      if (p.PARAM.int_value("VTK_EXPORT")) {
	getfem::mesh_fem mf_refined_vm(mcut_refined, 1);
	mf_refined_vm.set_classical_discontinuous_finite_element(1, 0.0001);
	cerr << "mf_refined_vm.nb_dof=" << mf_refined_vm.nb_dof() << "\n";
	plain_vector VM(mf_refined_vm.nb_dof());

	cout << "computing von mises\n";
	getfem::interpolation_von_mises(mf_refined, mf_refined_vm, W, VM);

	plain_vector D(mf_refined_vm.nb_dof() * Q), 
	  DN(mf_refined_vm.nb_dof());
	
	getfem::interpolation(mf_refined, mf_refined_vm, DIFF, D);
	for (unsigned i=0; i < DN.size(); ++i) {
	  DN[i] = gmm::vect_norm2(gmm::sub_vector(D, gmm::sub_interval(i*Q, Q)));
	}

	cout << "export to " << p.datafilename + ".vtk" << "..\n";
	getfem::vtk_export exp(p.datafilename + ".vtk",
			       p.PARAM.int_value("VTK_EXPORT")==1);

	exp.exporting(mf_refined); 
	//exp.write_point_data(mf_refined_vm, DN, "error");
	exp.write_point_data(mf_refined_vm, VM, "von mises stress");

	exp.write_point_data(mf_refined, W, "elastostatic_displacement");

	plain_vector VM_EXACT(mf_refined_vm.nb_dof());


	/* getfem::mesh_fem_global_function mf(mcut_refined,Q);
	   std::vector<getfem::pglobal_function> cfun(4);
	   for (unsigned j=0; j < 4; ++j)
	   cfun[j] = getfem::isotropic_crack_singular_2D(j, p.ls);
	   mf.set_functions(cfun);
	   getfem::interpolation_von_mises(mf, mf_refined_vm, p.exact_sol.U,
	   VM_EXACT);
	*/


	getfem::interpolation_von_mises(mf_refined, mf_refined_vm, EXACT, VM_EXACT);
	getfem::vtk_export exp2("crack_exact.vtk");
	exp2.exporting(mf_refined);
	exp2.write_point_data(mf_refined_vm, VM_EXACT, "exact von mises stress");
	exp2.write_point_data(mf_refined, EXACT, "reference solution");

	cout << "export done, you can view the data file with (for example)\n"
	  "mayavi2 -d " << p.datafilename << ".vtk -f "
	  "WarpVector -m Surface -m Outline\n";
      }

      cout << "L2 ERROR:"<< getfem::asm_L2_dist(p.mim, p.mf_u(), U,
						p.exact_sol.mf, p.exact_sol.U)
	   << endl << "H1 ERROR:"
	   << getfem::asm_H1_dist(p.mim, p.mf_u(), U,
				  p.exact_sol.mf, p.exact_sol.U) << "\n";
      
       
      cout << "L2 norm of the solution:"  << getfem::asm_L2_norm(p.mim,p.mf_u(),U)<<endl;
      cout << "H1 norm of the solution:"  << getfem::asm_H1_norm(p.mim,p.mf_u(),U)<<endl;

    }

  }
  GMM_STANDARD_CATCH_ERROR;
  
  GETFEM_MPI_FINALIZE;

  return 0; 
}