1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
|
/*===========================================================================
Copyright (C) 2002-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
* Linear Elastostatic problem with a crack.
*
* This program is used to check that getfem++ is working. This is also
* a good example of use of GetFEM.
*/
#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_export.h" /* export functions (save solution in a file) */
#include "getfem/getfem_derivatives.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_mesh_im_level_set.h"
#include "getfem/getfem_mesh_fem_level_set.h"
#include "getfem/getfem_mesh_fem_product.h"
#include "getfem/getfem_mesh_fem_global_function.h"
#include "getfem/getfem_mesh_fem_sum.h"
#include "getfem/getfem_crack_sif.h"
#include "gmm/gmm.h"
#include "gmm/gmm_inoutput.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
template <typename T> std::ostream &operator <<
(std::ostream &o, const std::vector<T>& m) { gmm::write(o,m); return o; }
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::dim_type;
using bgeot::short_type;
using bgeot::base_matrix; /* small dense matrix. */
/* definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++
*/
typedef getfem::model_real_plain_vector plain_vector;
typedef getfem::model_real_sparse_matrix sparse_matrix;
typedef gmm::dense_matrix<scalar_type> dense_matrix;
/**************************************************************************/
/* Exact solution. */
/**************************************************************************/
/* returns sin(theta/2) where theta is the angle
of 0-(x,y) with the axis Ox */
scalar_type sint2(scalar_type x, scalar_type y) {
scalar_type r = sqrt(x*x+y*y);
if (r == 0) return 0;
else return (y<0 ? -1:1) * sqrt(gmm::abs(r-x)/(2*r));
// sometimes (gcc3.3.2 -O3), r-x < 0 ....
}
scalar_type cost2(scalar_type x, scalar_type y) {
scalar_type r = sqrt(x*x+y*y);
if (r == 0) return 0;
else return sqrt(gmm::abs(r+x)/(2*r));
}
/* analytical solution for a semi-infinite crack [-inf,a] in an
infinite plane submitted to +sigma above the crack
and -sigma under the crack. (The crack is directed along the x axis).
nu and E are the poisson ratio and young modulus
solution taken from "an extended finite elt method with high order
elts for curved cracks", Stazi, Budyn,Chessa, Belytschko
*/
void elasticite2lame(const scalar_type young_modulus,
const scalar_type poisson_ratio,
scalar_type& lambda, scalar_type& mu) {
mu = young_modulus/(2*(1+poisson_ratio));
lambda = 2*mu*poisson_ratio/(1-poisson_ratio);
}
/* plane stress */
scalar_type young_modulus(scalar_type lambda, scalar_type mu){
return 4*mu*(lambda + mu)/(lambda+2*mu);
}
void sol_ref_infinite_plane(scalar_type nu, scalar_type E, scalar_type sigma,
scalar_type a, scalar_type xx, scalar_type y,
base_small_vector& U, int mode,
base_matrix *pgrad) {
scalar_type x = xx-a; /* the eq are given relatively to the crack tip */
//scalar_type KI = sigma*sqrt(M_PI*a);
scalar_type r = std::max(sqrt(x*x+y*y),1e-16);
scalar_type sqrtr = sqrt(r), sqrtr3 = sqrtr*sqrtr*sqrtr;
scalar_type cost = x/r, sint = y/r;
scalar_type theta = atan2(y,x);
scalar_type s2 = sin(theta/2); //sint2(x,y);
scalar_type c2 = cos(theta/2); //cost2(x,y);
// scalar_type c3 = cos(3*theta/2); //4*c2*c2*c2-3*c2; /* cos(3*theta/2) */
// scalar_type s3 = sin(3*theta/2); //4*s2*c2*c2-s2; /* sin(3*theta/2) */
scalar_type lambda, mu;
elasticite2lame(E,nu,lambda,mu);
U.resize(2);
if (pgrad) (*pgrad).resize(2,2);
scalar_type C= 1./E * (mode == 1 ? 1. : (1+nu));
if (mode == 1) {
scalar_type A=2+2*mu/(lambda+2*mu);
scalar_type B=-2*(lambda+mu)/(lambda+2*mu);
U[0] = sqrtr/sqrt(2*M_PI) * C * c2 * (A + B*cost);
U[1] = sqrtr/sqrt(2*M_PI) * C * s2 * (A + B*cost);
if (pgrad) {
(*pgrad)(0,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*c2*A-cost*cost*c2*B+sint*s2*A+sint*s2*B*cost+2*c2*B);
(*pgrad)(1,0) = -C/(2*sqrt(2*M_PI)*sqrtr)
* (-sint*c2*A+sint*c2*B*cost+cost*s2*A+cost*cost*s2*B);
(*pgrad)(0,1) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*s2*A-cost*cost*s2*B-sint*c2*A-sint*c2*B*cost+2*s2*B);
(*pgrad)(1,1) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (sint*s2*A-sint*s2*B*cost+cost*c2*A+cost*cost*c2*B);
}
} else if (mode == 2) {
scalar_type C1 = (lambda+3*mu)/(lambda+mu);
U[0] = sqrtr/sqrt(2*M_PI) * C * s2 * (C1 + 2 + cost);
U[1] = sqrtr/sqrt(2*M_PI) * C * c2 * (C1 - 2 + cost) * (-1.);
if (pgrad) {
(*pgrad)(0,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*s2*C1+2*cost*s2-cost*cost*s2-sint*c2*C1
-2*sint*c2-sint*cost*c2+2*s2);
(*pgrad)(1,0) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (sint*s2*C1+2*sint*s2-sint*s2*cost+cost*c2*C1
+2*cost*c2+cost*cost*c2);
(*pgrad)(0,1) = -C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*c2*C1-2*cost*c2-cost*cost*c2+sint*s2*C1
-2*sint*s2+sint*s2*cost+2*c2);
(*pgrad)(1,1) = C/(2.*sqrt(2*M_PI)*sqrtr)
* (-sint*c2*C1+2*sint*c2+sint*cost*c2+cost*s2*C1
-2*cost*s2+cost*cost*s2);
}
} else if (mode == 100) {
U[0] = - sqrtr3 * (c2 + 4./3 *(7*mu+3*lambda)/(lambda+mu)*c2*s2*s2
-1./3*(7*mu+3*lambda)/(lambda+mu)*c2);
U[1] = - sqrtr3 * (s2+4./3*(lambda+5*mu)/(lambda+mu)*s2*s2*s2
-(lambda+5*mu)/(lambda+mu)*s2);
if (pgrad) {
(*pgrad)(0,0) = 2*sqrtr*(-6*cost*c2*mu+7*cost*c2*c2*c2*mu
-3*cost*c2*lambda+3*cost*c2*c2*c2*lambda
-2*sint*s2*mu
+7*sint*s2*c2*c2*mu-sint*s2*lambda
+3*sint*s2*c2*c2*lambda)/(lambda+mu);
(*pgrad)(1,0) = -2*sqrtr*(6*sint*c2*mu-7*sint*c2*c2*c2*mu
+3*sint*c2*lambda-3*sint*c2*c2*c2*lambda
-2*cost*s2*mu
+7*cost*s2*c2*c2*mu-cost*s2*lambda
+3*cost*s2*c2*c2*lambda)/(lambda+mu);
(*pgrad)(0,1) = 2*sqrtr*(-2*cost*s2*mu-cost*s2*lambda
+cost*s2*c2*c2*lambda+5*cost*s2*c2*c2*mu
+4*sint*c2*mu
+sint*c2*lambda-sint*c2*c2*c2*lambda
-5*sint*c2*c2*c2*mu)/(lambda+mu);
(*pgrad)(1,1) = 2*sqrtr*(-2*sint*s2*mu-sint*s2*lambda
+sint*s2*c2*c2*lambda+5*sint*s2*c2*c2*mu
-4*cost*c2*mu
-cost*c2*lambda+cost*c2*c2*c2*lambda
+5*cost*c2*c2*c2*mu)/(lambda+mu);
}
} else if (mode == 101) {
U[0] = -4*sqrtr3*s2*(-lambda-2*mu+7*lambda*c2*c2
+11*mu*c2*c2)/(3*lambda-mu);
U[1] = -4*sqrtr3*c2*(-3*lambda+3*lambda*c2*c2-mu*c2*c2)/(3*lambda-mu);
if (pgrad) {
(*pgrad)(0,0) = -6*sqrtr*(-cost*s2*lambda-2*cost*s2*mu
+7*cost*s2*lambda*c2*c2
+11*cost*s2*mu*c2*c2+5*sint*c2*lambda
+8*sint*c2*mu-7*sint*c2*c2*c2*lambda
-11*sint*c2*c2*c2*mu)/(3*lambda-mu);
(*pgrad)(1,0) = -6*sqrtr*(-sint*s2*lambda-2*sint*s2*mu
+7*sint*s2*lambda*c2*c2
+11*sint*s2*mu*c2*c2-5*cost*c2*lambda
-8*cost*c2*mu+7*cost*c2*c2*c2*lambda
+11*cost*c2*c2*c2*mu)/(3*lambda-mu);
(*pgrad)(0,1) = -6*sqrtr*(-3*cost*c2*lambda+3*cost*c2*c2*c2*lambda
-cost*c2*c2*c2*mu-sint*s2*lambda
+3*sint*s2*lambda*c2*c2
-sint*s2*mu*c2*c2)/(3*lambda-mu);
(*pgrad)(1,1) = 6*sqrtr*(3*sint*c2*lambda
-3*sint*c2*c2*c2*lambda+sint*c2*c2*c2*mu
-cost*s2*lambda+3*cost*s2*lambda*c2*c2
-cost*s2*mu*c2*c2)/(3*lambda-mu);
}
} else if (mode == 10166666) {
U[0] = 4*sqrtr3*s2*(-lambda+lambda*c2*c2-3*mu*c2*c2)/(lambda-3*mu);
U[1] = 4*sqrtr3*c2*(-3*lambda-6*mu+5*lambda*c2*c2+9*mu*c2*c2)/(lambda-3*mu);
if (pgrad) {
(*pgrad)(0,0) = 6*sqrtr*(-cost*s2*lambda+cost*s2*lambda*c2*c2-
3*cost*s2*mu*c2*c2-2*sint*c2*mu+sint*c2*lambda-
sint*c2*c2*c2*lambda
+3*sint*c2*c2*c2*mu)/(lambda-3*mu);
(*pgrad)(1,0) = 6*sqrtr*(-sint*s2*lambda+sint*s2*lambda*c2*c2-
3*sint*s2*mu*c2*c2+2*cost*c2*mu-cost*c2*lambda+
cost*c2*c2*c2*lambda
-3*cost*c2*c2*c2*mu)/(lambda-3*mu);
(*pgrad)(0,1) = 6*sqrtr*(-3*cost*c2*lambda-6*cost*c2*mu
+5*cost*c2*c2*c2*lambda+
9*cost*c2*c2*c2*mu-sint*s2*lambda-2*sint*s2*mu+
5*sint*s2*lambda*c2*c2
+9*sint*s2*mu*c2*c2)/(lambda-3*mu);
(*pgrad)(1,1) = -6*sqrtr*(3*sint*c2*lambda+6*sint*c2*mu
-5*sint*c2*c2*c2*lambda-
9*sint*c2*c2*c2*mu-cost*s2*lambda-2*cost*s2*mu+
5*cost*s2*lambda*c2*c2
+9*cost*s2*mu*c2*c2)/(lambda-3*mu);
}
} else GMM_ASSERT1(false, "Unvalid mode");
if (!std::isfinite(U[0]))
cerr << "raaah not a number ... nu=" << nu << ", E=" << E << ", sig="
<< sigma << ", a=" << a << ", xx=" << xx << ", y=" << y << ", r="
<< r << ", sqrtr=" << sqrtr << ", cost=" << cost << ", U=" << U[0]
<< "," << U[1] << endl;
assert(std::isfinite(U[0]));
assert(std::isfinite(U[1]));
}
struct exact_solution {
getfem::mesh_fem_global_function mf;
getfem::base_vector U;
exact_solution(getfem::mesh &me) : mf(me) {}
void init(int mode, scalar_type lambda, scalar_type mu,
getfem::level_set &ls) {
std::vector<getfem::pglobal_function> cfun(4);
for (unsigned j=0; j < 4; ++j) {
auto s = std::make_shared<getfem::crack_singular_xy_function>(j);
cfun[j] = getfem::global_function_on_level_set(ls, s);
}
mf.set_functions(cfun);
mf.set_qdim(1);
U.resize(8); assert(mf.nb_dof() == 4);
getfem::base_vector::iterator it = U.begin();
scalar_type coeff=0.;
switch(mode) {
case 1: {
scalar_type A=2+2*mu/(lambda+2*mu), B=-2*(lambda+mu)/(lambda+2*mu);
/* "colonne" 1: ux, colonne 2: uy */
*it++ = 0; *it++ = A-B; /* sin(theta/2) */
*it++ = A+B; *it++ = 0; /* cos(theta/2) */
*it++ = -B; *it++ = 0; /* sin(theta/2)*sin(theta) */
*it++ = 0; *it++ = B; /* cos(theta/2)*cos(theta) */
coeff = 1/sqrt(2*M_PI);
} break;
case 2: {
scalar_type C1 = (lambda+3*mu)/(lambda+mu);
*it++ = C1+2-1; *it++ = 0;
*it++ = 0; *it++ = -(C1-2+1);
*it++ = 0; *it++ = 1;
*it++ = 1; *it++ = 0;
coeff = 2*(mu+lambda)/(lambda+2*mu)/sqrt(2*M_PI);
} break;
default:
GMM_ASSERT1(false, "Unvalid mode");
break;
}
gmm::scale(U, coeff/young_modulus(lambda,mu));
}
};
base_small_vector sol_f(const base_node &x) {
int N = x.size();
base_small_vector res(N);
return res;
}
/**************************************************************************/
/* Structure for the crack problem. */
/**************************************************************************/
struct crack_problem {
enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1,
MORTAR_BOUNDARY_IN=42, MORTAR_BOUNDARY_OUT=43 };
getfem::mesh mesh; /* the mesh */
getfem::mesh_level_set mls; /* the integration methods. */
getfem::mesh_im_level_set mim; /* the integration methods. */
getfem::mesh_fem mf_pre_u, mf_pre_mortar;
getfem::mesh_fem mf_mult;
getfem::mesh_fem_level_set mfls_u, mfls_mortar;
getfem::mesh_fem_global_function mf_sing_u;
getfem::mesh_fem mf_partition_of_unity;
getfem::mesh_fem_product mf_product;
getfem::mesh_fem_sum mf_u_sum;
getfem::mesh_fem mf_us;
getfem::mesh_fem& mf_u() { return mf_u_sum; }
scalar_type lambda, mu; /* Lame coefficients. */
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
getfem::mesh_fem mf_p; /* mesh_fem for the pressure for mixed form */
exact_solution exact_sol;
getfem::level_set ls; /* The two level sets defining the crack. */
getfem::level_set ls2, ls3; /* The two level-sets defining the add. cracks.*/
dal::bit_vector pm_convexes; /* convexes inside the enrichment
area when point-wise matching is used.*/
base_small_vector translation;
scalar_type residual; /* max residual for the iterative solvers */
bool mixed_pressure, add_crack;
unsigned dir_with_mult;
int mode;
size_type ind_first_global_dof;
scalar_type enr_area_radius;
struct cutoff_param {
scalar_type radius, radius1, radius0;
size_type fun_num;
};
cutoff_param cutoff;
typedef enum { NO_ENRICHMENT=0,
FIXED_ZONE=1,
GLOBAL_WITH_MORTAR=2,
GLOBAL_WITH_CUTOFF=3 } enrichment_option_enum;
enrichment_option_enum enrichment_option;
bool vectorial_enrichment;
dense_matrix Qsing;
std::string datafilename;
std::string GLOBAL_FUNCTION_MF, GLOBAL_FUNCTION_U;
bgeot::md_param PARAM;
bool solve(plain_vector &U);
void compute_sif(const plain_vector &U);
void init(void);
crack_problem(void) : mls(mesh), mim(mls),
mf_pre_u(mesh), mf_pre_mortar(mesh), mf_mult(mesh),
mfls_u(mls, mf_pre_u), mfls_mortar(mls, mf_pre_mortar),
mf_sing_u(mesh),
mf_partition_of_unity(mesh),
mf_product(mf_partition_of_unity, mf_sing_u),
mf_u_sum(mesh), mf_us(mesh), mf_rhs(mesh), mf_p(mesh),
exact_sol(mesh),
ls(mesh, 1, true), ls2(mesh, 1, true),
ls3(mesh, 1, true), Qsing(8,8) {}
};
std::string name_of_dof(getfem::pdof_description dof) {
char s[200];
snprintf(s, 199, "UnknownDof[%p]", (void*)dof);
for (dim_type d = 0; d < 4; ++d) {
if (dof == getfem::lagrange_dof(d)) {
snprintf(s, 199, "Lagrange[%d]", d); goto found;
}
if (dof == getfem::normal_derivative_dof(d)) {
snprintf(s, 199, "D_n[%d]", d); goto found;
}
if (dof == getfem::global_dof(d)) {
snprintf(s, 199, "GlobalDof[%d]", d);
}
if (dof == getfem::mean_value_dof(d)) {
snprintf(s, 199, "MeanValue[%d]", d);
}
if (getfem::dof_xfem_index(dof) != 0) {
snprintf(s, 199, "Xfem[idx:%d]", int(dof_xfem_index(dof)));
}
for (dim_type r = 0; r < d; ++r) {
if (dof == getfem::derivative_dof(d, r)) {
snprintf(s, 199, "D_%c[%d]", "xyzuvw"[r], d); goto found;
}
for (dim_type t = 0; t < d; ++t) {
if (dof == getfem::second_derivative_dof(d, r, t)) {
snprintf(s, 199, "D2%c%c[%d]", "xyzuvw"[r], "xyzuvw"[t], d);
goto found;
}
}
}
}
found:
return s;
}
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void crack_problem::init(void) {
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE = PARAM.string_value("FEM_TYPE","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
std::string SIMPLEX_INTEGRATION = PARAM.string_value("SIMPLEX_INTEGRATION",
"Name of simplex integration method");
std::string SINGULAR_INTEGRATION = PARAM.string_value("SINGULAR_INTEGRATION");
add_crack = (PARAM.int_value("ADDITIONAL_CRACK", "An additional crack ?") != 0);
enrichment_option =
enrichment_option_enum(PARAM.int_value("ENRICHMENT_OPTION",
"Enrichment option"));
vectorial_enrichment = (PARAM.int_value("VECTORIAL_ENRICHMENT",
"Vectorial enrichment option") != 0);
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE=" << FEM_TYPE << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
translation.resize(2);
translation[0] =0.5;
translation[1] =0.;
/* First step : build the mesh */
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
size_type N = pgt->dim();
std::vector<size_type> nsubdiv(N);
std::fill(nsubdiv.begin(),nsubdiv.end(),
PARAM.int_value("NX", "Nomber of space steps "));
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
base_small_vector tt(N); tt[1] = -0.5;
mesh.translation(tt);
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
residual = PARAM.real_value("RESIDUAL");
if (residual == 0.) residual = 1e-10;
enr_area_radius = PARAM.real_value("RADIUS_ENR_AREA",
"radius of the enrichment area");
mu = PARAM.real_value("MU", "Lame coefficient mu");
lambda = PARAM.real_value("LAMBDA", "Lame coefficient lambda");
cutoff.fun_num = PARAM.int_value("CUTOFF_FUNC", "cutoff function");
cutoff.radius = PARAM.real_value("CUTOFF", "Cutoff");
cutoff.radius1 = PARAM.real_value("CUTOFF1", "Cutoff1");
cutoff.radius0 = PARAM.real_value("CUTOFF0", "Cutoff0");
mf_u().set_qdim(dim_type(N));
/* set the finite element on the mf_u */
getfem::pfem pf_u =
getfem::fem_descriptor(FEM_TYPE);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
getfem::pintegration_method simp_ppi =
getfem::int_method_descriptor(SIMPLEX_INTEGRATION);
getfem::pintegration_method sing_ppi = (SINGULAR_INTEGRATION.size() ?
getfem::int_method_descriptor(SINGULAR_INTEGRATION) : 0);
mim.set_integration_method(mesh.convex_index(), ppi);
mls.add_level_set(ls);
if (add_crack) { mls.add_level_set(ls2); mls.add_level_set(ls3); }
mim.set_simplex_im(simp_ppi, sing_ppi);
mf_pre_u.set_finite_element(mesh.convex_index(), pf_u);
mf_pre_mortar.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(PARAM.string_value("MORTAR_FEM_TYPE")));
mf_mult.set_finite_element(mesh.convex_index(), pf_u);
mf_mult.set_qdim(dim_type(N));
mf_partition_of_unity.set_classical_finite_element(1);
mixed_pressure =
(PARAM.int_value("MIXED_PRESSURE","Mixed version or not.") != 0);
mode = int(PARAM.int_value("MODE","Mode for the reference solution"));
dir_with_mult = unsigned(PARAM.int_value("DIRICHLET_VERSION", "Dirichlet version"));
if (mixed_pressure) {
std::string FEM_TYPE_P = PARAM.string_value("FEM_TYPE_P","FEM name P");
mf_p.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(FEM_TYPE_P));
}
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
if (!pf_u->is_lagrange()) {
GMM_ASSERT1(false, "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
}
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
}
exact_sol.init(mode, lambda, mu, ls);
}
base_small_vector ls_function(const base_node P, int num = 0) {
scalar_type x = P[0], y = P[1];
base_small_vector res(2);
switch (num) {
case 0: {
res[0] = y;
res[1] = -.5 + x;
} break;
case 1: {
res[0] = gmm::vect_dist2(P, base_node(0.5, 0.)) - .25;
res[1] = gmm::vect_dist2(P, base_node(0.25, 0.0)) - 0.27;
} break;
case 2: {
res[0] = x - 0.25;
res[1] = gmm::vect_dist2(P, base_node(0.25, 0.0)) - 0.35;
} break;
default: assert(0);
}
return res;
}
bool crack_problem::solve(plain_vector &U) {
size_type N = mesh.dim();
ls.reinit();
for (size_type d = 0; d < ls.get_mesh_fem().nb_basic_dof(); ++d) {
ls.values(0)[d] = ls_function(ls.get_mesh_fem().point_of_basic_dof(d), 0)[0];
ls.values(1)[d] = ls_function(ls.get_mesh_fem().point_of_basic_dof(d), 0)[1];
}
ls.touch();
if (add_crack) {
ls2.reinit();
for (size_type d = 0; d < ls2.get_mesh_fem().nb_basic_dof(); ++d) {
ls2.values(0)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 1)[0];
ls2.values(1)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 1)[1];
}
ls2.touch();
ls3.reinit();
for (size_type d = 0; d < ls3.get_mesh_fem().nb_basic_dof(); ++d) {
ls3.values(0)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 2)[0];
ls3.values(1)[d] = ls_function(ls2.get_mesh_fem().point_of_basic_dof(d), 2)[1];
}
ls3.touch();
}
mls.adapt();
mim.adapt();
mfls_u.adapt();
mfls_mortar.adapt(); mfls_mortar.set_qdim(2);
cout << "Setting up the singular functions for the enrichment\n";
std::vector<getfem::pglobal_function> vfunc(4);
for (size_type i = 0; i < vfunc.size(); ++i) {
/* use the singularity */
getfem::pxy_function
s = std::make_shared<getfem::crack_singular_xy_function>(unsigned(i));
if (enrichment_option != FIXED_ZONE &&
enrichment_option != GLOBAL_WITH_MORTAR) {
/* use the product of the singularity function
with a cutoff */
getfem::pxy_function c
= std::make_shared<getfem::cutoff_xy_function>
(int(cutoff.fun_num), cutoff.radius, cutoff.radius1, cutoff.radius0);
s = std::make_shared<getfem::product_of_xy_functions>(s, c);
}
vfunc[i] = getfem::global_function_on_level_set(ls, s);
}
mf_sing_u.set_functions(vfunc);
switch (enrichment_option) {
case FIXED_ZONE: {
dal::bit_vector enriched_dofs;
plain_vector X(mf_partition_of_unity.nb_dof());
plain_vector Y(mf_partition_of_unity.nb_dof());
getfem::interpolation(ls.get_mesh_fem(), mf_partition_of_unity,
ls.values(1), X);
getfem::interpolation(ls.get_mesh_fem(), mf_partition_of_unity,
ls.values(0), Y);
for (size_type j = 0; j < mf_partition_of_unity.nb_dof(); ++j) {
if (gmm::sqr(X[j]) + gmm::sqr(Y[j]) <= gmm::sqr(enr_area_radius))
enriched_dofs.add(j);
}
if (enriched_dofs.card() < 3)
GMM_WARNING0("There is " << enriched_dofs.card() <<
" enriched dofs for the crack tip");
mf_product.set_enrichment(enriched_dofs);
mf_u_sum.set_mesh_fems(mf_product, mfls_u);
} break;
case GLOBAL_WITH_MORTAR: {
// Selecting the element in the enriched domain
dal::bit_vector cvlist_in_area;
dal::bit_vector cvlist_out_area;
for (dal::bv_visitor cv(mesh.convex_index());
!cv.finished(); ++cv) {
bool in_area = true;
/* For each element, we test all of its nodes.
If all the nodes are inside the enrichment area,
then the element is completly inside the area too */
for (unsigned j=0; j < mesh.nb_points_of_convex(cv); ++j) {
if (gmm::sqr(mesh.points_of_convex(cv)[j][0] - translation[0]) +
gmm::sqr(mesh.points_of_convex(cv)[j][1] - translation[1]) >
gmm::sqr(enr_area_radius)) {
in_area = false; break;
}
}
/* "remove" the global function on convexes outside the enrichment
area */
if (!in_area) {
cvlist_out_area.add(cv);
mf_sing_u.set_finite_element(cv, 0);
mf_u().set_dof_partition(cv, 1);
} else cvlist_in_area.add(cv);
}
/* extract the boundary of the enrichment area, from the
"inside" point-of-view, and from the "outside"
point-of-view */
getfem::mesh_region r_border, r_enr_out;
getfem::outer_faces_of_mesh(mesh, r_border);
getfem::outer_faces_of_mesh(mesh, cvlist_in_area,
mesh.region(MORTAR_BOUNDARY_IN));
getfem::outer_faces_of_mesh(mesh, cvlist_out_area,
mesh.region(MORTAR_BOUNDARY_OUT));
for (getfem::mr_visitor v(r_border); !v.finished(); ++v) {
mesh.region(MORTAR_BOUNDARY_OUT).sup(v.cv(), v.f());
}
mf_u_sum.set_mesh_fems(mf_sing_u, mfls_u);
} break;
case GLOBAL_WITH_CUTOFF :{
if(cutoff.fun_num == getfem::cutoff_xy_function::EXPONENTIAL_CUTOFF)
cout<<"Using exponential Cutoff..."<<endl;
else
cout<<"Using Polynomial Cutoff..."<<endl;
mf_u_sum.set_mesh_fems(mf_sing_u, mfls_u);
} break;
case NO_ENRICHMENT: {
mf_u_sum.set_mesh_fems(mfls_u);
} break;
}
gmm::clear(Qsing); gmm::resize(Qsing, 8, 8);
ind_first_global_dof = size_type(-1);
if (enrichment_option == GLOBAL_WITH_MORTAR
|| enrichment_option == GLOBAL_WITH_CUTOFF) {
// compute a base to the orthogonal to the mode I and mode II in the
// linear combination of singular function in order to reduce the problem
// on a vectorial enrichment with only two dofs.
exact_solution es1(mesh), es2(mesh);
es1.init(1, lambda, mu, ls);
es2.init(2, lambda, mu, ls);
gmm::copy(gmm::identity_matrix(), Qsing);
gmm::copy(es1.U, gmm::mat_col(Qsing, 0));
gmm::copy(es2.U, gmm::mat_col(Qsing, 1));
gmm::lu_inverse(Qsing);
// Search the position of the singular enrichment dofs.
GMM_ASSERT1(!mf_u().is_reduced(), "To be adapted");
size_type Qdim = mf_u().get_qdim();
for (dal::bv_visitor cv(mesh.convex_index());
!cv.finished() && (ind_first_global_dof == size_type(-1)); ++cv) {
getfem::pfem pf = mf_u().fem_of_element(cv);
for (size_type i = 0; i < pf->nb_dof(cv); ++i) {
// cout << "type of dof : " << name_of_dof(pf->dof_types()[i]) << endl;
if (pf->dof_types()[i] == getfem::global_dof(mesh.dim())) {
if (ind_first_global_dof == size_type(-1))
ind_first_global_dof = mf_u().ind_basic_dof_of_element(cv)[i*Qdim];
}
}
}
cout << "first global dof = " << ind_first_global_dof << endl;
GMM_ASSERT1(ind_first_global_dof != size_type(-1), "internal error");
}
U.resize(mf_u().nb_dof());
if (mixed_pressure) cout << "Number of dof for P: " << mf_p.nb_dof() << endl;
cout << "Number of dof for u: " << mf_u().nb_dof() << endl;
// Model description.
getfem::model model;
// Main unknown of the problem.
model.add_fem_variable("u", mf_u());
// Linearized elasticity brick.
model.add_initialized_fixed_size_data
("lambda", plain_vector(1, mixed_pressure ? 0.0 : lambda));
model.add_initialized_fixed_size_data("mu", plain_vector(1, mu));
getfem::add_isotropic_linearized_elasticity_brick
(model, mim, "u", "lambda", "mu");
// Linearized incompressibility condition brick.
if (mixed_pressure) {
model.add_initialized_fixed_size_data
("incomp_coeff", plain_vector(1, 1.0/lambda));
model.add_fem_variable("p", mf_p); // Adding the pressure as a variable
add_linear_incompressibility
(model, mim, "u", "p", size_type(-1), "incomp_coeff");
}
if (vectorial_enrichment && (enrichment_option == GLOBAL_WITH_MORTAR
|| enrichment_option == GLOBAL_WITH_CUTOFF)) {
sparse_matrix BB(6, mf_u().nb_dof());
gmm::copy(gmm::sub_matrix(Qsing, gmm::sub_interval(2,6),
gmm::sub_interval(0,8)),
gmm::sub_matrix(BB, gmm::sub_interval(0,6),
gmm::sub_interval(ind_first_global_dof, 8)));
model.add_fixed_size_variable("mult_spec", 6);
add_constraint_with_multipliers(model,"u","mult_spec",BB,plain_vector(6));
}
// Volumic source term.
std::vector<scalar_type> F(mf_rhs.nb_dof()*N);
getfem::interpolation_function(mf_rhs, F, sol_f);
model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(model, mim, "u", "VolumicData");
// Dirichlet condition.
model.add_initialized_fem_data("DirichletData", exact_sol.mf, exact_sol.U);
if (!dir_with_mult)
getfem::add_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_mult, DIRICHLET_BOUNDARY_NUM, "DirichletData");
else
getfem::add_Dirichlet_condition_with_penalization
(model, mim, "u", 1e12, DIRICHLET_BOUNDARY_NUM, "DirichletData");
if (enrichment_option == GLOBAL_WITH_MORTAR) {
/* add a constraint brick for the mortar junction between
the enriched area and the rest of the mesh */
/* we use mfls_u as the space of lagrange multipliers */
getfem::mesh_fem &mf_mortar = mfls_mortar;
/* adjust its qdim.. this is just evil and dangerous
since mf_u() is built upon mfls_u.. it would be better
to use a copy. */
mf_mortar.set_qdim(2); // EVIL
cout << "Handling mortar junction\n";
/* list of dof of mf_mortar for the mortar condition */
std::vector<size_type> ind_mortar;
/* unfortunately , dof_on_region sometimes returns too much dof
when mf_mortar is an enriched one so we have to filter them */
GMM_ASSERT1(!mf_mortar.is_reduced(), "To be adapted");
sparse_matrix M(mf_mortar.nb_dof(), mf_mortar.nb_dof());
getfem::asm_mass_matrix(M, mim, mf_mortar, MORTAR_BOUNDARY_OUT);
for (dal::bv_visitor_c d(mf_mortar.basic_dof_on_region(MORTAR_BOUNDARY_OUT));
!d.finished(); ++d) {
if (M(d,d) > 1e-8) ind_mortar.push_back(d);
else cout << " removing non mortar dof" << d << "\n";
}
cout << ind_mortar.size() << " dof for the lagrange multiplier)\n";
sparse_matrix H0(mf_mortar.nb_dof(), mf_u().nb_dof()),
H(ind_mortar.size(), mf_u().nb_dof());
gmm::sub_index sub_i(ind_mortar);
gmm::sub_interval sub_j(0, mf_u().nb_dof());
/* build the mortar constraint matrix -- note that the integration
method is conformal to the crack
*/
getfem::asm_mass_matrix(H0, mim, mf_mortar, mf_u(), MORTAR_BOUNDARY_OUT);
gmm::copy(gmm::sub_matrix(H0, sub_i, sub_j), H);
gmm::clear(H0);
getfem::asm_mass_matrix(H0, mim, mf_mortar, mf_u(),
MORTAR_BOUNDARY_IN);
gmm::add(gmm::scaled(gmm::sub_matrix(H0, sub_i, sub_j), -1.0), H);
/* because of the discontinuous partition of mf_u(), some levelset
enriched functions do not contribute any more to the
mass-matrix (the ones which are null on one side of the
levelset, when split in two by the mortar partition, may create
a "null" dof whose base function is all zero..
*/
sparse_matrix M2(mf_u().nb_dof(), mf_u().nb_dof());
getfem::asm_mass_matrix(M2, mim, mf_u(), mf_u());
for (size_type d = 0; d < mf_u().nb_dof(); ++d) {
if (M2(d,d) < 1e-10) {
cout << " removing null mf_u() dof " << d << "\n";
size_type n = gmm::mat_nrows(H);
gmm::resize(H, n+1, gmm::mat_ncols(H));
H(n, d) = 1;
}
}
model.add_fixed_size_variable("mult_mortar", gmm::mat_nrows(H));
add_constraint_with_multipliers(model,"u","mult_mortar", H,
plain_vector(gmm::mat_nrows(H)));
}
// Generic solve.
cout << "Total number of variables : " << model.nb_dof() << endl;
gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(model, iter);
// Solution extraction
gmm::copy(model.real_variable("u"), U);
return (iter.converged());
}
void crack_problem::compute_sif(const plain_vector &U) {
cout << "Computing stress intensity factors\n";
base_node tip; base_small_vector T, N;
getfem::get_crack_tip_and_orientation(ls, tip, T, N);
cout << "crack tip is : " << tip << ", T=" << T << ", N=" << N << "\n";
cout << "young modulus: " << young_modulus(lambda, mu) << "\n";
scalar_type ring_radius = 0.2;
scalar_type KI, KII;
estimate_crack_stress_intensity_factors(ls, mf_u(), U,
young_modulus(lambda, mu),
KI, KII, 1e-2);
cout << "estimation of crack SIF: " << KI << ", " << KII << "\n";
compute_crack_stress_intensity_factors(ls, mim, mf_u(), U, ring_radius,
lambda, mu,
young_modulus(lambda, mu),
KI, KII);
cout << "computation of crack SIF: " << KI << ", " << KII << "\n";
if (enrichment_option == GLOBAL_WITH_CUTOFF
|| enrichment_option == GLOBAL_WITH_MORTAR) {
/* Compare the computed coefficients of the global functions with
* the exact one.
*/
plain_vector diff(8);
gmm::copy(gmm::sub_vector(U,gmm::sub_interval(ind_first_global_dof, 8)),
diff);
cout << "GLOBAPPROX = " << diff << endl;
cout << "GLOBEXACT = " << exact_sol.U << endl;
if (!vectorial_enrichment) {
gmm::add(gmm::scaled(exact_sol.U, -1.0),diff);
cout << "euclidean error %: " << 100.0*gmm::vect_norm2(diff)/gmm::vect_norm2(exact_sol.U) << endl;
}
else {
plain_vector rr(8);
gmm::mult(Qsing, diff, rr);
cout << "KIh = " << rr[0] << " KIIh = " << rr[1] << endl;
}
}
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv);
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
//getfem::getfem_mesh_level_set_noisy();
try {
crack_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
p.mesh.write_to_file(p.datafilename + ".mesh");
plain_vector U(p.mf_u().nb_dof());
if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");
p.compute_sif(U);
{
getfem::mesh mcut;
p.mls.global_cut_mesh(mcut);
dim_type Q = p.mf_u().get_qdim();
getfem::mesh_fem mf(mcut, Q);
mf.set_classical_discontinuous_finite_element(2, 0.001);
// mf.set_finite_element
// (getfem::fem_descriptor("FEM_PK_DISCONTINUOUS(2, 2, 0.0001)"));
plain_vector V(mf.nb_dof());
/*for (unsigned i=0; i < p.mf_u().nb_dof(); ++i) {
cout << "dof " << i << ": " << p.mf_u().point_of_dof(i);
}
gmm::fill_random(U);*/
getfem::interpolation(p.mf_u(), mf, U, V);
getfem::stored_mesh_slice sl;
getfem::mesh mcut_refined;
unsigned NX = unsigned(p.PARAM.int_value("NX")), nn;
if (NX < 6) nn = 8;
else if (NX < 12) nn = 8;
else if (NX < 30) nn = 3;
else nn = 1;
/* choose an adequate slice refinement based on the distance to the crack tip */
std::vector<bgeot::short_type> nrefine(mcut.convex_index().last_true()+1);
for (dal::bv_visitor cv(mcut.convex_index()); !cv.finished(); ++cv) {
scalar_type dmin=0, d;
base_node Pmin,P;
for (unsigned i=0; i < mcut.nb_points_of_convex(cv); ++i) {
P = mcut.points_of_convex(cv)[i];
d = gmm::vect_norm2(ls_function(P));
if (d < dmin || i == 0) { dmin = d; Pmin = P; }
}
if (dmin < 1e-5)
nrefine[cv] = short_type(nn*4);
else if (dmin < .1)
nrefine[cv] = short_type(nn*2);
else nrefine[cv] = short_type(nn);
if (dmin < .01)
cout << "cv: "<< cv << ", dmin = " << dmin
<< "Pmin=" << Pmin << " " << nrefine[cv] << "\n";
}
{
getfem::mesh_slicer slicer(mcut);
getfem::slicer_build_mesh bmesh(mcut_refined);
slicer.push_back_action(bmesh);
slicer.exec(nrefine, getfem::mesh_region::all_convexes());
}
/*
sl.build(mcut,
getfem::slicer_build_mesh(mcut_refined), nrefine);*/
getfem::mesh_im mim_refined(mcut_refined);
mim_refined.set_integration_method(getfem::int_method_descriptor
("IM_TRIANGLE(6)"));
getfem::mesh_fem mf_refined(mcut_refined, dim_type(Q));
mf_refined.set_classical_discontinuous_finite_element(2, 0.0001);
plain_vector W(mf_refined.nb_dof());
getfem::interpolation(p.mf_u(), mf_refined, U, W);
p.exact_sol.mf.set_qdim(dim_type(Q));
assert(p.exact_sol.mf.nb_dof() == p.exact_sol.U.size());
plain_vector EXACT(mf_refined.nb_dof());
getfem::interpolation(p.exact_sol.mf, mf_refined,
p.exact_sol.U, EXACT);
plain_vector DIFF(EXACT); gmm::add(gmm::scaled(W,-1),DIFF);
if (p.PARAM.int_value("VTK_EXPORT")) {
getfem::mesh_fem mf_refined_vm(mcut_refined, 1);
mf_refined_vm.set_classical_discontinuous_finite_element(1, 0.0001);
cerr << "mf_refined_vm.nb_dof=" << mf_refined_vm.nb_dof() << "\n";
plain_vector VM(mf_refined_vm.nb_dof());
cout << "computing von mises\n";
getfem::interpolation_von_mises(mf_refined, mf_refined_vm, W, VM);
plain_vector D(mf_refined_vm.nb_dof() * Q),
DN(mf_refined_vm.nb_dof());
getfem::interpolation(mf_refined, mf_refined_vm, DIFF, D);
for (unsigned i=0; i < DN.size(); ++i) {
DN[i] = gmm::vect_norm2(gmm::sub_vector(D, gmm::sub_interval(i*Q, Q)));
}
cout << "export to " << p.datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(p.datafilename + ".vtk",
p.PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(mf_refined);
//exp.write_point_data(mf_refined_vm, DN, "error");
exp.write_point_data(mf_refined_vm, VM, "von mises stress");
exp.write_point_data(mf_refined, W, "elastostatic_displacement");
plain_vector VM_EXACT(mf_refined_vm.nb_dof());
/* getfem::mesh_fem_global_function mf(mcut_refined,Q);
std::vector<getfem::pglobal_function> cfun(4);
for (unsigned j=0; j < 4; ++j)
cfun[j] = getfem::isotropic_crack_singular_2D(j, p.ls);
mf.set_functions(cfun);
getfem::interpolation_von_mises(mf, mf_refined_vm, p.exact_sol.U,
VM_EXACT);
*/
getfem::interpolation_von_mises(mf_refined, mf_refined_vm, EXACT, VM_EXACT);
getfem::vtk_export exp2("crack_exact.vtk");
exp2.exporting(mf_refined);
exp2.write_point_data(mf_refined_vm, VM_EXACT, "exact von mises stress");
exp2.write_point_data(mf_refined, EXACT, "reference solution");
cout << "export done, you can view the data file with (for example)\n"
"mayavi2 -d " << p.datafilename << ".vtk -f "
"WarpVector -m Surface -m Outline\n";
}
cout << "L2 ERROR:"<< getfem::asm_L2_dist(p.mim, p.mf_u(), U,
p.exact_sol.mf, p.exact_sol.U)
<< endl << "H1 ERROR:"
<< getfem::asm_H1_dist(p.mim, p.mf_u(), U,
p.exact_sol.mf, p.exact_sol.U) << "\n";
cout << "L2 norm of the solution:" << getfem::asm_L2_norm(p.mim,p.mf_u(),U)<<endl;
cout << "H1 norm of the solution:" << getfem::asm_H1_norm(p.mim,p.mf_u(),U)<<endl;
}
}
GMM_STANDARD_CATCH_ERROR;
GETFEM_MPI_FINALIZE;
return 0;
}
|