1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/*===========================================================================
Copyright (C) 2002-2020 Yves Renard.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include "getfem/dal_basic.h"
#include <deque>
#include <complex>
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
typedef std::deque<int>::size_type size_type;
template<typename T> struct dyndeque : public std::deque<T> {
T &operator[](unsigned i) {
if (i >= this->size())
this->resize(i+1);
return std::deque<T>::operator[](i);
}
};
template<typename T> struct dynarray : public dal::dynamic_array<T> {
void push_back(const T& t) { (*this)[this->size()] = t; }
};
template <typename DA> void bench_da(unsigned N1, unsigned N2) {
double t = gmm::uclock_sec();
DA v;
for (unsigned n=0; n < N1; ++n) {
v.clear();
for (unsigned i=0; i < N2; ++i) {
v.push_back(i);
}
}
cout << " push_back : " << gmm::uclock_sec()-t << " sec\n";
t = gmm::uclock_sec();
v.clear();
v.resize(N2);
for (unsigned n=0; n < N1*2; ++n) {
for (unsigned i=0; i < N2; ++i) {
v[i] = i+n;
}
}
cout << " random access fill: " << gmm::uclock_sec()-t << " sec\n";
t = gmm::uclock_sec();
v.clear();
v.resize(N2);
for (unsigned n=0; n < N1*2; ++n) {
typename DA::iterator it = v.begin(), ite = v.end();
for (; it != ite; ++it) {
*it += n;
}
}
cout << " iterator fill : " << gmm::uclock_sec()-t << " sec\n";
DA v2; v2.resize(N2);
{ typename DA::iterator it = v2.begin(), ite = v2.end();
for (; it != ite; ++it) *it = rand(); }
t = gmm::uclock_sec();
for (unsigned n=0; n < N1/10; ++n) {
v = v2; std::sort(v.begin(), v.end());
}
cout << " sort : " << gmm::uclock_sec()-t << " sec\n";
}
void bench() {
unsigned N1=1000, N2 = 10000;
cout << "dynamic_array<long long> performances: \n";
bench_da<dynarray<size_type> >(N1, N2);
cout << "std::deque<long long> performances:\n";
bench_da<dyndeque<size_type> >(N1, N2);
cout << "dynamic_array<int> performances: \n";
bench_da<dynarray<int> >(N1, N2);
cout << "std::deque<int> performances:\n";
bench_da<dyndeque<int> >(N1, N2);
}
int main(void) {
try {
cout << "size of int : " << sizeof(int) << endl;
cout << "size of size_t : " << sizeof(size_t) << endl;
cout << "size of (int *) : " << sizeof(int *) << endl;
cout << "size of short int : " << sizeof(short int) << endl;
cout << "size of long int : " << sizeof(long int) << endl;
cout << "size of long long int : " << sizeof(long long int) << endl;
cout << "size of char : " << sizeof(char) << endl;
cout << "size of float : " << sizeof(float) << endl;
cout << "size of double : " << sizeof(double) << endl;
cout << "size of long double : " << sizeof(long double) << endl;
cout << "size of complex<float>: " << sizeof(std::complex<float>)
<< endl;
cout << "size of complex<double>: " << sizeof(std::complex<double>)
<< endl;
cout << "size of complex<long double>: "
<< sizeof(std::complex<long double>) << endl;
assert(sizeof(gmm::int8_type) == 1);
assert(sizeof(gmm::uint8_type) == 1);
assert(sizeof(gmm::int16_type) == 2);
assert(sizeof(gmm::uint16_type) == 2);
assert(sizeof(gmm::int32_type) == 4);
assert(sizeof(gmm::uint32_type) == 4);
assert(sizeof(gmm::int64_type) == 8);
assert(sizeof(gmm::uint64_type) == 8);
// from stl_config.h
# ifdef __GNUC__
cout << "Gnu compiler " << __GNUC__ << "." << __GNUC_MINOR__ << endl;
# endif
# if defined(__sgi) && !defined(__GNUC__)
cout << "Sgi compiler " << _COMPILER_VERSION << endl;
# endif
# if defined(__SUNPRO_CC)
cout << "Sun pro compiler\n";
# endif
# if defined(__BORLANDC__)
cout << "Borland compiler\n";
# endif
// std::complex<float> x(1.0,0.0);
// cout << "A complex : " << x << endl;
bench();
size_t ee = 1, f = 2;
ptrdiff_t g = ee - f;
cout << "1 - 2 = " << g << endl;
GMM_ASSERT1(g == -1, "Basic operation error");
dal::dynamic_array<int, 4> t;
#ifndef NDEBUG
try {
t[(unsigned)(-5)] = 8;
GMM_ASSERT1(false, "negative index does not produce an error");
}
catch(const std::logic_error &e) {
cout << "Out of range error successfully catched, ok\n";
}
#endif
t[64] = 13;
// cout << "capacity : (should be 80) " << t.capacity() << endl;
GMM_ASSERT1(t.capacity() == 80, " bad capacity");
dal::dynamic_array<int, 4>::iterator itb = t.begin(), ite = t.end();
dal::dynamic_array<int, 4>::iterator ita;
ita = itb++;
// cout << "range : " << (ita - t.begin()) << endl;
while (itb != ite) *itb++ = int(3);
// std::fill(t.begin(), t.end(), int(3));
// cout << "capacity : (should be 80) " << t.capacity() << endl;
GMM_ASSERT1(t.capacity() == 80, "bad capacity");
// cout << "t[64] = (should be 3) " << t[64] << endl;
GMM_ASSERT1(t[64] == 3, "iterators don't work");
t.clear();
// cout << "capacity : (should be 0) " << t.capacity() << endl;
GMM_ASSERT1(t.capacity() == 0, "clear does not work");
std::fill(t.begin(), t.end(), int(3));
// cout << "capacity : (should be 0) " << t.capacity() << endl;
GMM_ASSERT1(t.capacity() == 0, "clear does not work");
t[64] = 6;
dal::dynamic_array<int, 4> t2, t3;
t2[64] = 12;
t3 = t2 = t;
// cout << "capacity : (should be 80) " << t.capacity() << endl;
GMM_ASSERT1(t.capacity() == 80, " bad capacity");
{
dal::dynamic_array<int, 4>::const_iterator
it1 = ((const dal::dynamic_array<int, 4> *)(&t))->begin(),
it2 = ((const dal::dynamic_array<int, 4> *)(&t2))->begin(),
it3 = ((const dal::dynamic_array<int, 4> *)(&t3))->begin(),
ite2 = ((const dal::dynamic_array<int, 4> *)(&t))->end(),
itb2 = ((const dal::dynamic_array<int, 4> *)(&t))->begin();
for ( ; it1 != ite2; it1++, it2++, it3++)
{
size_t ind = it1 - itb2;
if
( ( (&(*it1)) != &(t[ind]) ) ||
( (&(*it2)) != &(t2[ind]) ) ||
( (&(*it3)) != &(t3[ind]) ) ||
( (&(*it1)) == (&(*it2)) ) ||
( (&(*it2)) == (&(*it3)) ) ||
( (&(*it1)) == (&(*it3)) ) )
GMM_ASSERT1(false, " copy does not work");
}
}
{
dal::dynamic_array<int, 4>::iterator
it1 = t.begin(),
it2 = t2.begin(),
it3 = t3.begin(),
ite2 = t.end(),
itb2 = t.begin();
for ( ; it1 != ite2; it1++, it2++, it3++)
{
size_t ind = it1 - itb2;
if
( ( (&(*it1)) != &(t[ind]) ) ||
( (&(*it2)) != &(t2[ind]) ) ||
( (&(*it3)) != &(t3[ind]) ) ||
( (&(*it1)) == (&(*it2)) ) ||
( (&(*it2)) == (&(*it3)) ) ||
( (&(*it1)) == (&(*it3)) ) )
GMM_ASSERT1(false, " copy does not work");
}
}
t[64] = 11;
// cout << "t2[64] = (should be 6 6) " << t2[64] << " " << t3[64]<< endl;
GMM_ASSERT1(t2[64] == 6, " copy does not work");
// cout << "capacity : (should be 80) " << t3.capacity() << endl;
GMM_ASSERT1(t.capacity() == 80, "bad capacity");
}
GMM_STANDARD_CATCH_ERROR;
return 0;
}
|