1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*===========================================================================
Copyright (C) 2007-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
// RECTANGULAR_MATRIX_PARAM
// SQUARED_MATRIX_PARAM
// ENDPARAM;
#include "gmm/gmm_kernel.h"
#include "gmm/gmm_dense_lu.h"
#include "gmm/gmm_dense_qr.h"
#include "gmm/gmm_condition_number.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
using gmm::size_type;
bool print_debug = false;
// template <typename MAT, typename T> void print_for_matlab(const MAT &m, T) {
// cout.precision(16);
// cout << "[ ";
// for (size_type i = 0; i < gmm::mat_nrows(m); ++i) {
// for (size_type j = 0; j < gmm::mat_ncols(m); ++j) cout << " " << m(i,j);
// if (i != gmm::mat_nrows(m)-1) cout << " ; \n";
// }
// cout << " ]" << endl;
// }
// template <typename MAT, typename T> void print_for_matlab(const MAT &m,
// std::complex<T>) {
// cout.precision(16);
// cout << "[ ";
// for (size_type i = 0; i < gmm::mat_nrows(m); ++i) {
// for (size_type j = 0; j < gmm::mat_ncols(m); ++j)
// cout << " (" << m(i,j).real() << "+" << m(i,j).imag() << "*i)" ;
// if (i != gmm::mat_nrows(m)-1) cout << " ; \n";
// }
// cout << " ]" << endl;
// }
// template <typename MAT> inline void print_for_matlab(const MAT &m)
// { print_for_matlab(m, gmm::linalg_traits<MAT>::value_type()); }
template <typename T> inline T real_or_complex(double a, double, T)
{ return T(a); }
template <typename T> inline
std::complex<T> real_or_complex(double a, double b, std::complex<T>) {
typedef typename gmm::number_traits<T>::magnitude_type R;
return std::complex<T>(R(a), R(b));
}
template <typename T> struct cmp_eval {
bool operator()(T a, T b) {
typedef typename gmm::number_traits<T>::magnitude_type R;
// R prec = gmm::default_tol(R());
R dr = gmm::real(a) - gmm::real(b);
R di = gmm::imag(a) - gmm::imag(b);
if (gmm::abs(dr) > gmm::abs(di)) return (dr<R(0)); else return (di<R(0));
}
};
template <typename T> void sort_eval(std::vector<T> &v) {
std::sort(v.begin(), v.end(), cmp_eval<T>());
}
template <typename MAT1, typename MAT2>
bool test_procedure(const MAT1 &m1_, const MAT2 &m2_) {
MAT1 &m1 = const_cast<MAT1 &>(m1_);
MAT2 &m2 = const_cast<MAT2 &>(m2_);
typedef typename gmm::linalg_traits<MAT1>::value_type T;
typedef typename gmm::number_traits<T>::magnitude_type R;
R prec = gmm::default_tol(R());
R error;
static size_type nb_iter(0);
++nb_iter;
// gmm::qr_factor(A, Q, R) is tested in test_gmm_mult.C
//
// test for gmm::qr_factor(A), apply_house_right and apply_house_left
//
size_type m = gmm::mat_nrows(m1), n = gmm::mat_ncols(m1);
size_type k = size_type(rand() % 50);
if (print_debug) {
static int nexpe = 0;
cout << "Begin experiment " << ++nexpe << "\n\nwith " << m1 << "\n\n";
gmm::set_warning_level(3);
}
gmm::dense_matrix<T> dm1(m, n);
gmm::copy(m1, dm1);
if (m >= n) {
gmm::dense_matrix<T> q(k,m), qaux(k,m), q2(m,k), dm1aux(k,n), m1aux(k,n);
gmm::fill_random(q); gmm::copy(q, qaux);
gmm::mult(q, m1, m1aux);
gmm::qr_factor(dm1);
gmm::copy(dm1, m1);
gmm::apply_house_right(dm1, q);
for (size_type j = 0; j < n; ++j)
for (size_type i = j+1; i < m; ++i)
dm1(i, j) = T(0);
gmm::mult(q, dm1, dm1aux);
gmm::add(gmm::scaled(m1aux, T(-1)), dm1aux);
error = gmm::mat_euclidean_norm(dm1aux);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
gmm::copy(gmm::identity_matrix(), q);
gmm::apply_house_right(m1, q);
size_type min_km = std::min(k, m);
gmm::dense_matrix<T> a(min_km, min_km), b(min_km, min_km);
gmm::copy(gmm::identity_matrix(), b);
if (k > m) gmm::mult(gmm::conjugated(q), q, a);
else gmm::mult(q, gmm::conjugated(q), a);
gmm::add(gmm::scaled(b, T(-1)), a);
error = gmm::mat_euclidean_norm(a);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
gmm::copy(gmm::conjugated(qaux), q2);
gmm::apply_house_left(m1, q2);
gmm::mult(gmm::conjugated(q2), dm1, dm1aux);
gmm::add(gmm::scaled(m1aux, T(-1)), dm1aux);
error = gmm::mat_euclidean_norm(dm1aux);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
}
else {
gmm::dense_matrix<T> q(k,n), qaux(k,n), q2(n,k), dm1aux(k,m), m1aux(k,m);
gmm::fill_random(q); gmm::copy(q, qaux);
gmm::mult(q, gmm::transposed(m1), m1aux);
gmm::qr_factor(gmm::transposed(dm1));
gmm::copy(dm1, m1);
gmm::apply_house_right(gmm::transposed(dm1), q);
for (size_type i = 0; i < m; ++i)
for (size_type j = i+1; j < n; ++j)
dm1(i, j) = T(0);
gmm::mult(q, gmm::transposed(dm1), dm1aux);
gmm::add(gmm::scaled(m1aux, T(-1)), dm1aux);
error = gmm::mat_euclidean_norm(dm1aux);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
gmm::copy(gmm::identity_matrix(), q);
gmm::apply_house_right(gmm::transposed(m1), q);
size_type min_km = std::min(k, n);
gmm::dense_matrix<T> a(min_km, min_km), b(min_km, min_km);
gmm::copy(gmm::identity_matrix(), b);
if (k > n) gmm::mult(gmm::conjugated(q), q, a);
else gmm::mult(q, gmm::conjugated(q), a);
gmm::add(gmm::scaled(b, T(-1)), a);
error = gmm::mat_euclidean_norm(a);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
gmm::copy(gmm::conjugated(qaux), q2);
gmm::apply_house_left(gmm::transposed(m1), q2);
gmm::mult(gmm::conjugated(q2), gmm::transposed(dm1), dm1aux);
gmm::add(gmm::scaled(m1aux, T(-1)), dm1aux);
error = gmm::mat_euclidean_norm(dm1aux);
if (!(error <= prec * R(10000)))
GMM_ASSERT1(false, "Error too large: " << error);
}
//
// Test for implicit_qr_algorithm
//
m = gmm::mat_nrows(m2);
gmm::dense_matrix<T> cq(m, m), cr(m, m), ca(m, m);
std::vector<T> cv(m);
std::vector<std::complex<R> > eigc(m), cvc(m);
gmm::fill_random(ca);
std::complex<R> det1(gmm::lu_det(ca)), det2(1);
implicit_qr_algorithm(ca, eigc, cq);
for (size_type i = 0; i < m; ++i) det2 *= eigc[i];
if (gmm::abs(det1 - det2) > (gmm::abs(det1)+gmm::abs(det2))/R(50))
GMM_ASSERT1(false, "Error in QR or det. det lu: " << det1
<< " det qr: " << det2);
if (print_debug)
cout << "det lu = " << det1 << " det qr = " << det2 << endl;
if (m > 0) do {
gmm::fill_random(cq);
} while (gmm::abs(gmm::lu_det(cq)) < sqrt(prec)
|| gmm::condition_number(cq) > R(1000));
gmm::copy(cq, cr);
gmm::lu_inverse(cr);
gmm::fill_random(cv);
if (m > 0) cv[ 0] = real_or_complex( 0.0, 0.0, cv[0]);
if (m > 1) cv[ 1] = real_or_complex( 0.0, 0.0, cv[0]);
if (m > 2) cv[ 2] = real_or_complex( 0.01,-0.1, cv[0]);
if (m > 3) cv[ 3] = real_or_complex( 0.01, 0.1, cv[0]);
if (m > 4) cv[ 4] = real_or_complex( -2.0, 3.0, cv[0]);
if (m > 5) cv[ 5] = real_or_complex( -2.0, 3.0, cv[0]);
if (m > 6) cv[ 6] = real_or_complex( -50.0, 3.0, cv[0]);
if (m > 7) cv[ 7] = real_or_complex( 100.0, 1.0, cv[0]);
if (m > 8) cv[ 8] = real_or_complex( 300.0, 1.0, cv[0]);
if (m > 9) cv[ 9] = real_or_complex( 500.0, 1.0, cv[0]);
if (m > 10) cv[10] = real_or_complex( 1000.0, 1.0, cv[0]);
if (m > 11) cv[11] = real_or_complex( 4000.0, 1.0, cv[0]);
if (m > 12) cv[12] = real_or_complex( 5000.0, 1.0, cv[0]);
if (m > 13) cv[13] = real_or_complex( 10000.0, 1.0, cv[0]);
if (m > 14) cv[14] = real_or_complex( 80000.0, 1.0, cv[0]);
if (m > 15) cv[15] = real_or_complex(100000.0, 1.0, cv[0]);
gmm::clear(m2);
for (size_type l = 0; l < m; ++l) m2(l, l) = cv[l];
gmm::mult(cq, m2, ca);
gmm::mult(ca, cr, ca);
implicit_qr_algorithm(ca, eigc, cq);
gmm::copy(cv, cvc);
sort_eval(cvc);
sort_eval(eigc);
error = gmm::vect_dist2(cvc, eigc);
if (!(error <= sqrt(prec) * gmm::vect_norm2(cv) * R(10)))
GMM_ASSERT1(false, "Error in QR algorithm, error = " << error);
gmm::dense_matrix<T> aa(m, m), bb(m, m);
gmm::mult(gmm::conjugated(cq), ca, aa);
gmm::mult(aa, cq, bb);
for (size_type i = 0; i < m; ++i)
for (size_type j = (i == 0) ? 0 : i-1; j < m; ++j)
bb(i, j) = T(0);
error = gmm::mat_maxnorm(bb);
if (!(error <= sqrt(prec) * gmm::vect_norm2(cv) * R(10)))
GMM_ASSERT1(false, "Error in Schur vectors, error = "<< error);
//
// Test for symmetric_qr_algorithm
//
m = gmm::mat_nrows(m2);
std::vector<R> cvr(m), eigcr(m);
if (m > 0) do {
gmm::fill_random(cr);
} while (gmm::abs(gmm::lu_det(cr)) < sqrt(prec)
|| gmm::condition_number(cr) > R(1000));
gmm::qr_factor(cr, cq, ca);
gmm::fill_random(cvr);
gmm::copy(gmm::identity_matrix(), m2);
if (m > 0) cvr[ 0] = R( 0.0 );
if (m > 1) cvr[ 1] = R( 0.0 );
if (m > 2) cvr[ 2] = R( 0.01);
if (m > 3) cvr[ 3] = R( 0.01);
if (m > 4) cvr[ 4] = R( -2.0 );
if (m > 5) cvr[ 5] = R( -2.0 );
if (m > 6) cvr[ 6] = R( -50.0 );
if (m > 7) cvr[ 7] = R( 100.0 );
if (m > 8) cvr[ 8] = R( 300.0 );
if (m > 9) cvr[ 9] = R( 500.0 );
if (m > 10) cvr[10] = R( 1000.0 );
if (m > 11) cvr[11] = R( 4000.0 );
if (m > 12) cvr[12] = R( 5000.0 );
if (m > 13) cvr[13] = R( 10000.0 );
if (m > 14) cvr[14] = R( 80000.0 );
if (m > 15) cvr[15] = R(100000.0 );
gmm::clear(m2);
for (size_type l = 0; l < m; ++l) m2(l, l) = cvr[l];
gmm::mult(gmm::conjugated(cq), m2, ca);
gmm::mult(ca, cq, ca);
symmetric_qr_algorithm(ca, eigcr, cq);
for (size_type l = 0; l < m; ++l) {
std::vector<T> vy(m);
gmm::mult(ca, gmm::mat_col(cq, l),
gmm::scaled(gmm::mat_col(cq, l), -eigcr[l]), vy);
error = gmm::vect_norm2(vy);
if (!(error <= sqrt(prec) * gmm::vect_norm2(cvr) * R(10)))
GMM_ASSERT1(false, "Error too large: " << error);
}
sort_eval(cvr);
sort_eval(eigcr);
error = gmm::vect_dist2(cvr, eigcr);
if (!(error <= sqrt(prec) * gmm::vect_norm2(cvr) * R(10)))
GMM_ASSERT1(false, "Error in QR algorithm.");
if (nb_iter == 100) return true;
return false;
}
|