File: laplacian_with_bricks.cc

package info (click to toggle)
getfem 5.4.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,640 kB
  • sloc: cpp: 126,151; ansic: 24,798; python: 9,244; sh: 3,648; perl: 1,829; makefile: 1,367
file content (287 lines) | stat: -rw-r--r-- 11,006 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*===========================================================================

 Copyright (C) 2002-2020 Yves Renard, Julien Pommier.

 This file is a part of GetFEM

 GetFEM  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

===========================================================================*/

/**@file laplacian.cc
   @brief Laplacian (Poisson) problem.
 
   The laplace equation is solved on a regular mesh of the unit
   square, and is compared to the analytical solution.

   This program is used to check that getfem++ is working. This is
   also a good example of use of GetFEM. This program  does not use the
   model bricks intentionally in order to serve as an example of solving
   a pde directly with the assembly procedures.
*/

#include "getfem/getfem_assembling.h"
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "gmm/gmm.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;

/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes (derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type;   /* = unsigned long */

/* definition of some matrix/vector types. These ones are built
 * using the predefined types in Gmm++
 */
typedef gmm::rsvector<scalar_type> sparse_vector_type;
typedef gmm::row_matrix<sparse_vector_type> sparse_matrix_type;
typedef gmm::col_matrix<sparse_vector_type> col_sparse_matrix_type;
typedef std::vector<scalar_type> plain_vector;

/* Definitions for the exact solution of the Laplacian problem,
 *  i.e. Delta(sol_u) + sol_f = 0
 */

base_small_vector sol_K; /* a coefficient */
/* exact solution */
scalar_type sol_u(const base_node &x) { return sin(gmm::vect_sp(sol_K, x)); }
/* righ hand side */
scalar_type sol_f(const base_node &x)
{ return gmm::vect_sp(sol_K, sol_K) * sin(gmm::vect_sp(sol_K, x)); }
/* gradient of the exact solution */
base_small_vector sol_grad(const base_node &x)
{ return sol_K * cos(gmm::vect_sp(sol_K, x)); }

/*
  structure for the Laplacian problem
  (not mandatory, just to gather the variables)
*/
struct laplacian_problem {

  enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1, INNER_FACES = 2};
  enum { DIRICHLET_WITH_MULTIPLIERS = 0, DIRICHLET_WITH_PENALIZATION = 1};
  getfem::mesh mesh;        /* the mesh */
  getfem::mesh_im mim;      /* the integration methods. */
  getfem::mesh_fem mf_u;    /* the main mesh_fem, for the Laplacian solution */
  getfem::mesh_fem mf_rhs;  /* the mesh_fem for the right hand side(f(x),..) */

  scalar_type residual;        /* max residual for the iterative solvers     */
  size_type N, dirichlet_version;
  scalar_type dirichlet_coefficient; /* Penalization parameter.              */
  plain_vector U;

  std::string datafilename;
  bgeot::md_param PARAM;
  bool DG_TERMS;
  scalar_type interior_penalty_factor;

  bool solve(void);
  void init(void);
  void compute_error();
  laplacian_problem(void) : mim(mesh), mf_u(mesh), mf_rhs(mesh) {}
};

/* Read parameters from the .param file, build the mesh, set finite element
 * and integration methods and selects the boundaries.
 */
void laplacian_problem::init(void) {
  
  std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
  std::string FEM_TYPE  = PARAM.string_value("FEM_TYPE","FEM name");
  std::string INTEGRATION = PARAM.string_value("INTEGRATION",
					       "Name of integration method");
  DG_TERMS = (PARAM.int_value("DG_TERMS",
			      "Discontinuous Galerkin terms or not") != 0);
  interior_penalty_factor = PARAM.real_value("INTERIOR_PENALTY_FACTOR",
					     "Interior penalty factor for DG");

  cout << "MESH_TYPE=" << MESH_TYPE << "\n";
  cout << "FEM_TYPE="  << FEM_TYPE << "\n";
  cout << "INTEGRATION=" << INTEGRATION << "\n";

  /* First step : build the mesh */
  bgeot::pgeometric_trans pgt = 
    bgeot::geometric_trans_descriptor(MESH_TYPE);
  N = pgt->dim();
  std::vector<size_type> nsubdiv(N);
  std::fill(nsubdiv.begin(),nsubdiv.end(),
	    PARAM.int_value("NX", "Nomber of space steps "));
  getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
			    PARAM.int_value("MESH_NOISED") != 0);
  
  bgeot::base_matrix M(N,N);
  for (size_type i=0; i < N; ++i) {
    static const char *t[] = {"LX","LY","LZ"};
    M(i,i) = (i<3) ? PARAM.real_value(t[i],t[i]) : 1.0;
  }
  if (N>1) { M(0,1) = PARAM.real_value("INCLINE") * PARAM.real_value("LY"); }

  /* scale the unit mesh to [LX,LY,..] and incline it */
  mesh.transformation(M);

  datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
  scalar_type FT = PARAM.real_value("FT", "parameter for exact solution");
  residual = PARAM.real_value("RESIDUAL");
  dirichlet_version = PARAM.int_value("DIRICHLET_VERSION",
				      "Type of Dirichlet contion");
  if (dirichlet_version == 1)
    dirichlet_coefficient = PARAM.real_value("DIRICHLET_COEFFICIENT",
					     "Penalization coefficient for "
					     "Dirichlet condition");
  if (residual == 0.) residual = 1e-10;
  sol_K.resize(N);
  for (size_type j = 0; j < N; j++)
    sol_K[j] = ((j & 1) == 0) ? FT : -FT;

  /* set the finite element on the mf_u */
  getfem::pfem pf_u = getfem::fem_descriptor(FEM_TYPE);
  getfem::pintegration_method ppi = getfem::int_method_descriptor(INTEGRATION);

  mim.set_integration_method(mesh.convex_index(), ppi);
  mf_u.set_finite_element(mesh.convex_index(), pf_u);

  /* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
     not used in the .param file */
  std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
  if (data_fem_name.size() == 0) {
    GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM. "
		<< "In that case you need to set "
		<< "DATA_FEM_TYPE in the .param file");
    mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
  } else {
    mf_rhs.set_finite_element(mesh.convex_index(), 
			      getfem::fem_descriptor(data_fem_name));
  }
  
  /* set boundary conditions
   * (Neuman on the upper face, Dirichlet elsewhere) */
  cout << "Selecting Neumann and Dirichlet boundaries\n";
  getfem::mesh_region border_faces;
  getfem::outer_faces_of_mesh(mesh, border_faces);
  for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
    assert(i.is_face());
    base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
    un /= gmm::vect_norm2(un);
    if (gmm::abs(un[N-1] - 1.0) < 1.0E-7) { // new Neumann face
      mesh.region(NEUMANN_BOUNDARY_NUM).add(i.cv(), i.f());
    } else {
      mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
    }
  }

  if (DG_TERMS)
    mesh.region(INNER_FACES) = getfem::inner_faces_of_mesh(mesh);

}

bool laplacian_problem::solve(void) {

  getfem::model model;

  // Main unknown of the problem
  model.add_fem_variable("u", mf_u);

  // Laplacian term on u.
  getfem::add_Laplacian_brick(model, mim, "u");

  // Volumic source term.
  std::vector<scalar_type> F(mf_rhs.nb_dof());
  getfem::interpolation_function(mf_rhs, F, sol_f);
  model.add_initialized_fem_data("VolumicData", mf_rhs, F);
  getfem::add_source_term_brick(model, mim, "u", "VolumicData");

  // Neumann condition.
  gmm::resize(F, mf_rhs.nb_dof()*N);
  getfem::interpolation_function(mf_rhs, F, sol_grad, NEUMANN_BOUNDARY_NUM);
  model.add_initialized_fem_data("NeumannData", mf_rhs, F);
  getfem::add_normal_source_term_brick
    (model, mim, "u", "NeumannData", NEUMANN_BOUNDARY_NUM);

  // Dirichlet condition.
  gmm::resize(F, mf_rhs.nb_dof());
  getfem::interpolation_function(mf_rhs, F, sol_u);
  model.add_initialized_fem_data("DirichletData", mf_rhs, F);

  if (dirichlet_version == DIRICHLET_WITH_MULTIPLIERS)
    getfem::add_Dirichlet_condition_with_multipliers
      (model, mim, "u", mf_u,
       DIRICHLET_BOUNDARY_NUM, "DirichletData");
  else
    getfem::add_Dirichlet_condition_with_penalization
      (model, mim, "u", dirichlet_coefficient,
       DIRICHLET_BOUNDARY_NUM, "DirichletData");
  
  if (DG_TERMS) {
    model.add_initialized_scalar_data("alpha", interior_penalty_factor);
    std::string jump="((u-Interpolate(u,neighbor_element))*Normal)";
    std::string test_jump="((Test_u-Interpolate(Test_u,neighbor_element))*Normal)";
    std::string grad_mean="((Grad_u+Interpolate(Grad_u,neighbor_element))*0.5)";
    std::string grad_test_mean
      ="((Grad_Test_u+Interpolate(Grad_Test_u,neighbor_element))*0.5)";
    std::string expr = "-("+grad_mean+").("+test_jump+") "
      "- ("+jump+").("+grad_test_mean+")"
      "+ alpha*("+jump+").("+test_jump+")";
    getfem::add_linear_term(model, mim, expr, INNER_FACES, true);
  }

  model.listvar(cout);

  std::string expr = model.Neumann_term("u", DIRICHLET_BOUNDARY_NUM);
  cout << "Neumann term : " << expr << endl;

  gmm::iteration iter(residual, 1, 40000);
  getfem::standard_solve(model, iter);

  gmm::resize(U, mf_u.nb_dof());
  gmm::copy(model.real_variable("u"), U);

  return (iter.converged());
}

/* compute the error with respect to the exact solution */
void laplacian_problem::compute_error() {
  plain_vector V(mf_rhs.nb_basic_dof());
  getfem::interpolation(mf_u, mf_rhs, U, V);
  for (size_type i = 0; i < mf_rhs.nb_basic_dof(); ++i)
    V[i] -= sol_u(mf_rhs.point_of_basic_dof(i));
  cout.precision(16);
  cout << "L2 error = " << getfem::asm_L2_norm(mim, mf_rhs, V) << endl
       << "H1 error = " << getfem::asm_H1_norm(mim, mf_rhs, V) << endl
       << "Linfty error = " << gmm::vect_norminf(V) << endl;     
}

/**************************************************************************/
/*  main program.                                                         */
/**************************************************************************/

int main(int argc, char *argv[]) {

  GETFEM_MPI_INIT(argc, argv);
  FE_ENABLE_EXCEPT;        // Enable floating point exception for Nan.

  laplacian_problem p;
  p.PARAM.read_command_line(argc, argv);
  p.init();
  p.mesh.write_to_file(p.datafilename + ".mesh");
  if (!p.solve()) GMM_ASSERT1(false, "Solve procedure has failed");
  p.compute_error();
  
  GETFEM_MPI_FINALIZE;

  return 0; 
}