1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*===========================================================================
Copyright (C) 2002-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
@file nonlinear_elastostatic.cc
@brief Nonlinear Elastostatic problem (large strain).
A rubber bar is submitted to a large torsion.
This program is used to check that getfem++ is working. This is also
a good example of use of GetFEM.
*/
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_nonlinear_elasticity.h"
#include "gmm/gmm.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::base_vector;
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::dim_type;
using bgeot::base_matrix; /* small dense matrix. */
/* definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++
*/
typedef getfem::modeling_standard_sparse_vector sparse_vector;
typedef getfem::modeling_standard_sparse_matrix sparse_matrix;
typedef getfem::modeling_standard_plain_vector plain_vector;
/*
structure for the elastostatic problem
*/
struct elastostatic_problem {
enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1};
getfem::mesh mesh; /* the mesh */
getfem::mesh_im mim; /* the integration methods */
getfem::mesh_fem mf_u; /* main mesh_fem, for the elastostatic solution */
getfem::mesh_fem mf_p; /* mesh_fem for the pressure. */
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
getfem::mesh_fem mf_coef; /* mesh_fem used to represent pde coefficients */
scalar_type p1, p2, p3; /* elastic coefficients. */
scalar_type residual; /* max residual for the iterative solvers */
std::string datafilename;
bgeot::md_param PARAM;
bool solve(plain_vector &U);
void init(void);
elastostatic_problem(void) : mim(mesh), mf_u(mesh), mf_p(mesh), mf_rhs(mesh),
mf_coef(mesh) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
and integration methods and selects the boundaries.
(this is boilerplate code, not very interesting)
*/
void elastostatic_problem::init(void) {
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE = PARAM.string_value("FEM_TYPE","FEM name");
std::string FEM_TYPE_P= PARAM.string_value("FEM_TYPE_P",
"FEM name for the pressure");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE=" << FEM_TYPE << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
/* First step : build the mesh */
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
size_type N = pgt->dim();
std::vector<size_type> nsubdiv(N);
std::fill(nsubdiv.begin(),nsubdiv.end(),
PARAM.int_value("NX", "Nomber of space steps "));
nsubdiv[1] = PARAM.int_value("NY") ? PARAM.int_value("NY") : nsubdiv[0];
if (N>2)
nsubdiv[2] = PARAM.int_value("NZ") ? PARAM.int_value("NZ") : nsubdiv[0];
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
bgeot::base_matrix M(N,N);
for (size_type i=0; i < N; ++i) {
static const char *t[] = {"LX","LY","LZ"};
M(i,i) = (i<3) ? PARAM.real_value(t[i],t[i]) : 1.0;
}
if (N>1) { M(0,1) = PARAM.real_value("INCLINE") * PARAM.real_value("LY"); }
/* scale the unit mesh to [LX,LY,..] and incline it */
mesh.transformation(M);
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
residual = PARAM.real_value("RESIDUAL"); if (residual == 0.) residual = 1e-10;
p1 = PARAM.real_value("P1", "First Elastic coefficient");
p2 = PARAM.real_value("P2", "Second Elastic coefficient");
p3 = PARAM.real_value("P3", "Third Elastic coefficient");
mf_u.set_qdim(dim_type(N));
/* set the finite element on the mf_u */
getfem::pfem pf_u =
getfem::fem_descriptor(FEM_TYPE);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
mim.set_integration_method(ppi);
mf_u.set_finite_element(pf_u);
mf_p.set_finite_element(getfem::fem_descriptor(FEM_TYPE_P));
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM"
". In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set the finite element on mf_coef. Here we use a very simple element
* since the only function that need to be interpolated on the mesh_fem
* is f(x)=1 ... */
mf_coef.set_finite_element(mesh.convex_index(),
getfem::classical_fem(pgt,0));
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor it(border_faces); !it.finished(); ++it) {
assert(it.is_face());
base_node un = mesh.normal_of_face_of_convex(it.cv(), it.f());
un /= gmm::vect_norm2(un);
if (gmm::abs(un[N-1] - 1.0) < 1.0E-7) {
mesh.region(DIRICHLET_BOUNDARY_NUM).add(it.cv(),it.f());
} else if (gmm::abs(un[N-1] + 1.0) < 1.0E-7) {
mesh.region(DIRICHLET_BOUNDARY_NUM).add(it.cv(),it.f());
}
}
}
/**************************************************************************/
/* Model. */
/**************************************************************************/
bool elastostatic_problem::solve(plain_vector &U) {
size_type nb_dof_rhs = mf_rhs.nb_dof();
size_type N = mesh.dim();
size_type law_num = PARAM.int_value("LAW");
// Linearized elasticity brick.
base_vector p(3); p[0] = p1; p[1] = p2; p[2] = p3;
/* choose the material law */
std::string lawname;
switch (law_num) {
case 0:
case 1: lawname = "Saint_Venant_Kirchhoff"; p.resize(2); break;
case 2: lawname = "Ciarlet_Geymonat"; p.resize(3); break;
case 3: lawname = "Incompressible_Mooney_Rivlin"; p.resize(2); break;
default: GMM_ASSERT1(false, "no such law");
}
if (N == 2) {
cout << "2D plane strain hyper-elasticity\n";
lawname = "Plane_Strain_"+lawname;
}
getfem::model model;
// Main unknown of the problem (displacement).
model.add_fem_variable("u", mf_u);
// Nonlinear elasticity brick
model.add_initialized_fixed_size_data("params", p);
getfem::add_finite_strain_elasticity_brick(model, mim, lawname, "u","params");
// Incompressibility
if (law_num == 1 || law_num == 3) {
model.add_fem_variable("p", mf_p);
getfem::add_finite_strain_incompressibility_brick(model, mim, "u", "p");
}
// Defining the volumic source term.
base_vector f(N);
f[0] = PARAM.real_value("FORCEX","Amplitude of the gravity");
f[1] = PARAM.real_value("FORCEY","Amplitude of the gravity");
if (N>2)
f[2] = PARAM.real_value("FORCEZ","Amplitude of the gravity");
plain_vector F(nb_dof_rhs * N);
for (size_type i = 0; i < nb_dof_rhs; ++i) {
gmm::copy(f, gmm::sub_vector(F, gmm::sub_interval(i*N, N)));
}
// Volumic source term brick.
model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(model, mim, "u", "VolumicData");
// Dirichlet condition
plain_vector F2(nb_dof_rhs * N);
model.add_initialized_fem_data("DirichletData", mf_rhs, F2);
if (PARAM.int_value("DIRICHLET_VERSION") == 0)
getfem::add_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_u, DIRICHLET_BOUNDARY_NUM, "DirichletData");
else
getfem::add_Dirichlet_condition_with_penalization
(model, mim, "u", 1E15, DIRICHLET_BOUNDARY_NUM, "DirichletData");
gmm::iteration iter;
gmm::set_traces_level(1); // To avoid some trace messages
/* prepare the export routine for OpenDX (all time steps will be exported)
(can be viewed with "dx -edit nonlinear_elastostatic.net")
*/
getfem::dx_export exp(datafilename + ".dx",
PARAM.int_value("VTK_EXPORT")==1);
getfem::stored_mesh_slice sl;
sl.build(mesh, getfem::slicer_boundary(mesh),8);
exp.exporting(sl,true); exp.exporting_mesh_edges();
//exp.begin_series("deformationsteps");
exp.write_point_data(mf_u, U, "stepinit");
exp.serie_add_object("deformationsteps");
GMM_ASSERT1(!mf_rhs.is_reduced(), "To be adapted for reduced mesh_fems");
int nb_step = int(PARAM.int_value("NBSTEP"));
size_type maxit = PARAM.int_value("MAXITER");
for (int step = 0; step < nb_step; ++step) {
plain_vector DF(F);
gmm::copy(gmm::scaled(F, (step+1.)/(scalar_type)nb_step), DF);
gmm::copy(DF, model.set_real_variable("VolumicData"));
if (N>2) {
/* Apply the gradual torsion/extension */
scalar_type torsion = PARAM.real_value("TORSION",
"Amplitude of the torsion");
torsion *= (step+1)/scalar_type(nb_step);
scalar_type extension = PARAM.real_value("EXTENSION",
"Amplitude of the extension");
extension *= (step+1)/scalar_type(nb_step);
base_node G(N); G[0] = G[1] = 0.5;
for (size_type i = 0; i < nb_dof_rhs; ++i) {
const base_node P = mf_rhs.point_of_basic_dof(i) - G;
scalar_type r = sqrt(P[0]*P[0]+P[1]*P[1]),
theta = atan2(P[1],P[0]);
F2[i*N+0] = r*cos(theta + (torsion*P[2])) - P[0];
F2[i*N+1] = r*sin(theta + (torsion*P[2])) - P[1];
F2[i*N+2] = extension * P[2];
}
}
/* update the imposed displacement */
gmm::copy(F2, model.set_real_variable("DirichletData"));
cout << "step " << step << ", number of variables : "
<< model.nb_dof() << endl;
iter = gmm::iteration(residual, int(PARAM.int_value("NOISY")),
maxit ? maxit : 40000);
/* let the non-linear solve (Newton) do its job */
getfem::standard_solve(model, iter);
gmm::copy(model.real_variable("u"), U);
//char s[100]; snprintf(s, 100, "step%d", step+1);
/* append the new displacement to the exported opendx file */
exp.write_point_data(mf_u, U); //, s);
exp.serie_add_object("deformationsteps");
}
// Solution extraction
gmm::copy(model.real_variable("u"), U);
return (iter.converged());
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv);
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
try {
elastostatic_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
p.mesh.write_to_file(p.datafilename + ".mesh");
p.mf_u.write_to_file(p.datafilename + ".mf", true);
p.mf_rhs.write_to_file(p.datafilename + ".mfd", true);
plain_vector U(p.mf_u.nb_dof());
GMM_ASSERT1(p.solve(U), "Solve has failed");
if (p.PARAM.int_value("VTK_EXPORT")) {
gmm::vecsave(p.datafilename + ".U", U);
cout << "export to " << p.datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(p.datafilename + ".vtk",
p.PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(p.mf_u);
exp.write_point_data(p.mf_u, U, "elastostatic_displacement");
cout << "export done, you can view the data file with (for example)\n"
"mayavi2 -d " << p.datafilename << ".vtk -f ExtractVectorNorm -f "
"WarpVector -m Surface -m Outline\n";
}
}
GMM_STANDARD_CATCH_ERROR;
GETFEM_MPI_FINALIZE;
return 0;
}
|