File: nonlinear_elastostatic.param

package info (click to toggle)
getfem 5.4.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,640 kB
  • sloc: cpp: 126,151; ansic: 24,798; python: 9,244; sh: 3,648; perl: 1,829; makefile: 1,367
file content (90 lines) | stat: -rw-r--r-- 4,042 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
% Copyright (C) 2017-2020 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
% -*- matlab -*- (enables emacs matlab mode)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for program nonlinear elastostatic problem                   %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% pde parameters :	        				      %%%%%
LX = .5;		% size in X.
LY = 1.0;	        % size in Y.
LZ = 2.0;		% size in Z.
P1 = 1.;	        % First elastic coefficient.
P2 = 1.;   	        % Second elastic coefficient.
P3 = 0.5;   	        % Third elastic coefficient.
LAW = 2;     % 0 : SaintVenant-Kirchhoff
             % 1 : SaintVenant-Kirchhoff+incompressibility
             % 2 : Ciarlet-Geymonat
             % 3 : Mooney-Rivlin (+incompressibility)

FORCEX = 0          % Amplitude of the external force
FORCEY = 0;
FORCEZ = 0;
TORSION = 2.00; %3.14;
EXTENSION = 0.0;
%%%%%   discretisation parameters  :                     	      %%%%%
MESH_TYPE = 'GT_PK(3,1)';
%MESH_TYPE = 'GT_QK(3,1)'; % linear rectangles
%MESH_TYPE = 'GT_PRISM(3,1)';     % 3D prisms
NX = 2;            	          % space steps.
NZ = 8;

MESH_NOISED = 0; % Set to one if you want to "shake" the mesh

FEM_TYPE = 'FEM_PK(3,2)';
% FEM_TYPE = 'FEM_PK_WITH_CUBIC_BUBBLE(3, 1)';
% FEM_TYPE = 'FEM_PK_WITH_CUBIC_BUBBLE(3, 2)';
%FEM_TYPE = 'FEM_QK(3,1)';
%FEM_TYPE = 'FEM_PRODUCT(FEM_PK(2,1),FEM_PK(1,1))';
%FEM_TYPE = 'FEM_PK_HIERARCHICAL(2,2)';
%FEM_TYPE = 'FEM_PK_HIERARCHICAL_COMPOSITE(2,1,2)';

FEM_TYPE_P = 'FEM_PK(3,1)';
%FEM_TYPE_P = 'FEM_PK_DISCONTINUOUS(3,1)';

% DATA_FEM_TYPE must be defined if your main FEM is not Lagrangian
%DATA_FEM_TYPE = 'FEM_PK(2,1)';
DATA_FEM_TYPE = 'FEM_PK(3,2)'


INTEGRATION = 'IM_TETRAHEDRON(6)'
%INTEGRATION = 'IM_TRIANGLE(6)'; % quadrature rule for polynomials up
                               % to degree 6 on triangles
%INTEGRATION = 'IM_EXACT_SIMPLEX(2)'; % exact integration on triangles
%INTEGRATION = 'IM_NC(2,6)';     % newton-cotes of degree 6 on triangles
%INTEGRATION = 'IM_NC_PARALLELEPIPED(2,6)'; % newton-cotes, degree 6,
                                          % quadrangles
%INTEGRATION = 'IM_NC_PRISM(3,12)'; % newton-cotes, degree 12, prims
%INTEGRATION = 'IM_GAUSS1D(10)'; % Gauss-Legendre integration on the
                               % segment of order 10
%INTEGRATION = 'IM_GAUSSLOBATTO1D(10)'; % Gauss-Lobatto-Legendre
                                      % integration on the segment
                                      % of order 10
%INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(3,5)'; % Product of two
                                              % IM_GAUSS1D(10) (for
                                              % quadrangles)
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_GAUSS1D(5), 3)';
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(7), 3)';

RESIDUAL = 1E-6;     	% residu for iterative solvers.
MAXITER = 500;
DIRICHLET_VERSION=0;
NBSTEP = 40;
%%%%%   saving parameters                                             %%%%%
ROOTFILENAME = 'nonlinear_elastostatic';     % Root of data files.
VTK_EXPORT = 1; % export solution to a .vtk file ?
NOISY=1