1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
% Copyright (C) 2017-2020 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
% -*- matlab -*- (enables emacs matlab mode)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for program nonlinear elastostatic problem %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% pde parameters : %%%%%
LX = .5; % size in X.
LY = 1.0; % size in Y.
LZ = 2.0; % size in Z.
P1 = 1.; % First elastic coefficient.
P2 = 1.; % Second elastic coefficient.
P3 = 0.5; % Third elastic coefficient.
LAW = 2; % 0 : SaintVenant-Kirchhoff
% 1 : SaintVenant-Kirchhoff+incompressibility
% 2 : Ciarlet-Geymonat
% 3 : Mooney-Rivlin (+incompressibility)
FORCEX = 0 % Amplitude of the external force
FORCEY = 0;
FORCEZ = 0;
TORSION = 2.00; %3.14;
EXTENSION = 0.0;
%%%%% discretisation parameters : %%%%%
MESH_TYPE = 'GT_PK(3,1)';
%MESH_TYPE = 'GT_QK(3,1)'; % linear rectangles
%MESH_TYPE = 'GT_PRISM(3,1)'; % 3D prisms
NX = 2; % space steps.
NZ = 8;
MESH_NOISED = 0; % Set to one if you want to "shake" the mesh
FEM_TYPE = 'FEM_PK(3,2)';
% FEM_TYPE = 'FEM_PK_WITH_CUBIC_BUBBLE(3, 1)';
% FEM_TYPE = 'FEM_PK_WITH_CUBIC_BUBBLE(3, 2)';
%FEM_TYPE = 'FEM_QK(3,1)';
%FEM_TYPE = 'FEM_PRODUCT(FEM_PK(2,1),FEM_PK(1,1))';
%FEM_TYPE = 'FEM_PK_HIERARCHICAL(2,2)';
%FEM_TYPE = 'FEM_PK_HIERARCHICAL_COMPOSITE(2,1,2)';
FEM_TYPE_P = 'FEM_PK(3,1)';
%FEM_TYPE_P = 'FEM_PK_DISCONTINUOUS(3,1)';
% DATA_FEM_TYPE must be defined if your main FEM is not Lagrangian
%DATA_FEM_TYPE = 'FEM_PK(2,1)';
DATA_FEM_TYPE = 'FEM_PK(3,2)'
INTEGRATION = 'IM_TETRAHEDRON(6)'
%INTEGRATION = 'IM_TRIANGLE(6)'; % quadrature rule for polynomials up
% to degree 6 on triangles
%INTEGRATION = 'IM_EXACT_SIMPLEX(2)'; % exact integration on triangles
%INTEGRATION = 'IM_NC(2,6)'; % newton-cotes of degree 6 on triangles
%INTEGRATION = 'IM_NC_PARALLELEPIPED(2,6)'; % newton-cotes, degree 6,
% quadrangles
%INTEGRATION = 'IM_NC_PRISM(3,12)'; % newton-cotes, degree 12, prims
%INTEGRATION = 'IM_GAUSS1D(10)'; % Gauss-Legendre integration on the
% segment of order 10
%INTEGRATION = 'IM_GAUSSLOBATTO1D(10)'; % Gauss-Lobatto-Legendre
% integration on the segment
% of order 10
%INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(3,5)'; % Product of two
% IM_GAUSS1D(10) (for
% quadrangles)
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_GAUSS1D(5), 3)';
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(7), 3)';
RESIDUAL = 1E-6; % residu for iterative solvers.
MAXITER = 500;
DIRICHLET_VERSION=0;
NBSTEP = 40;
%%%%% saving parameters %%%%%
ROOTFILENAME = 'nonlinear_elastostatic'; % Root of data files.
VTK_EXPORT = 1; % export solution to a .vtk file ?
NOISY=1
|