1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
% Copyright (C) 2017-2020 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters for plasticity program %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% pde parameters : %%%%%
LX =100; %100; % size in X in mm. %2.0; %1.0;
LY =20; %20; % size in Y in mm. %0.5; %1.0;
LZ =20; % size in Z in mm. %0.5;
MU = 80769.; % Lam coefficient in N/mm^2. % 385 Lam coefficient.
LAMBDA = 121150.; % Lam coefficient in N/mm^2. % 330 pour plane_stress, 577 pour plain_strain et 3D.
%LAMBDAT = 84605.;
%MUT = 77839.;
INCLINE = 0; % Incline of the mesh.
%%%%% discretisation parameters : %%%%%
%MESH_TYPE = 'load';
%MESH_FILE = 'pde_elasto.mesh'; %'one_elt_.mesh';
MESH_TYPE = 'GT_PK(2,1)'; % linear triangles
%MESH_TYPE = 'GT_PK(3,1)';
%MESH_TYPE = 'GT_PRISM(3,1)'; % 3D prisms
%MESH_TYPE = 'GT_QK(2,1)'; % linear rectangles
NX =25; %20 ; %5 % space step.
NY =10; %20 ;
NZ =5 ;
MESH_NOISED = 0; % Set to one if you want to "shake" the mesh
%FEM_TYPE = 'FEM_PK(2,1)'; % P1 for triangles
FEM_TYPE = 'FEM_PK(2,2)'; % P2 for triangles
%FEM_TYPE = 'FEM_PK(3,2)'; % P2 for tetrahedrons
%FEM_TYPE = 'FEM_QK(2,1)'; % Q1 fem for quadrangles
%FEM_TYPE = 'FEM_QK(2,2)';
FEM_TYPE_XI = 'FEM_PK_DISCONTINUOUS(2,2)';
DATA_FEM_TYPE = '' %'FEM_PK_DISCONTINUOUS(2,0)';
% DATA_FEM_TYPE must be defined if your main FEM is not Lagrangian
%DATA_FEM_TYPE = 'FEM_PK(2,1)';
INTEGRATION = 'IM_TRIANGLE(6)'; % quadrature rule for polynomials up
% to degree 6 on triangles
%INTEGRATION = 'IM_TRIANGLE(1)';
%INTEGRATION = 'IM_TETRAHEDRON(5)';
%INTEGRATION = 'IM_EXACT_SIMPLEX(2)'; % exact integration on triangles
%INTEGRATION = 'IM_NC(2,6)'; % newton-cotes of degree 6 on triangles
%INTEGRATION = 'IM_NC_PARALLELEPIPED(2,6)'; % newton-cotes, degree 6,
% quadrangles
%INTEGRATION = 'IM_NC_PRISM(3,12)'; % newton-cotes, degree 12, prims
%INTEGRATION = 'IM_GAUSS1D(10)'; % Gauss-Legendre integration on the
% segment of order 10
%INTEGRATION = 'IM_GAUSSLOBATTO1D(10)'; % Gauss-Lobatto-Legendre
% integration on the segment
% of order 10
%INTEGRATION = 'IM_GAUSS_PARALLELEPIPED(2,10)'; % Product of two
% IM_GAUSS1D(10) (for
% quadrangles)
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_GAUSS1D(5), 3)';
%INTEGRATION = 'IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(7), 3)';
GENERIC_DIRICHLET = 0; % Generic Dirichlet condition for non-lagrangian elts.
%%%%% saving parameters %%%%%
ROOTFILENAME = 'plasticity'; % Root of data files.
EXPORT = 1;
%%%%%%%%%DONNEES SPECIFIQUEMENT PLASTIQUES
SIGMA_Y = 9000.; % plasticity yield stress yield
RESIDUAL=1E-6; % RESIDUAL for iterative solvers
OPTASCII=0; % option for writing results : 0 for binary and other for ascii
FLAG_HYP=0; % option for the calculation hypothesis : 1 for stress plane
% other for classical 3D
% others to be defined, plane strain for instance
FORCE=330;
|