1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
/*===========================================================================
Copyright (C) 2002-2020 Yves Renard, Michel Salaün.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
@file plate.cc
@brief Linear Elastostatic plate problem.
This program is used to check that getfem++ is working. This is
also a good example of use of GetFEM.
*/
#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_linearized_plates.h"
#include "getfem/getfem_export.h" /* export functions (save solution in a file) */
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "gmm/gmm.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::dim_type;
using bgeot::base_matrix; /* small dense matrix. */
/* definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++
*/
typedef getfem::modeling_standard_sparse_vector sparse_vector;
typedef getfem::modeling_standard_sparse_matrix sparse_matrix;
typedef getfem::modeling_standard_plain_vector plain_vector;
/*
structure for the elastostatic problem
*/
struct plate_problem {
enum { SIMPLY_FIXED_BOUNDARY_NUM = 0 };
getfem::mesh mesh; /* the mesh */
getfem::mesh_im mim, mim_subint;
getfem::mesh_fem mf_ut;
getfem::mesh_fem mf_u3;
getfem::mesh_fem mf_theta;
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
getfem::mesh_fem mf_coef; /* mesh_fem used to represent pde coefficients */
scalar_type lambda, mu; /* Lamé coefficients. */
scalar_type E, nu; /* Lamé coefficients. */
scalar_type epsilon; /* thickness of the plate. */
scalar_type pressure;
scalar_type residual; /* max residual for the iterative solvers */
scalar_type LX , LY ; // default : LX = LY = 1
bool mitc;
int sol_ref; // sol_ref = 0 : simple support on the vertical edges
// sol_ref = 1 : homogeneous on the vertical edges
// sol_ref = 2 : homogeneous on the 4 vertical
// edges with solution u3 = sin²(x)*sin²(y)
scalar_type eta; // useful only if sol_ref == 2 :
// eta = 0 => Kirchhoff-Love
// eta = small => Mindlin
size_type N_Four ;
base_matrix theta1_Four, theta2_Four, u3_Four ;
int study_flag; // if studyflag = 1, then the loadings applied are chosen
// in order to have a maximal vertical displacement equal to one.
// Nothing is done if study_flag has another value.
std::string datafilename;
bgeot::md_param PARAM;
base_small_vector theta_exact(base_node P);
scalar_type u3_exact(base_node P);
bool solve(plain_vector &Ut, plain_vector &U3, plain_vector &THETA);
void init(void);
void compute_error(plain_vector &Ut, plain_vector &U3, plain_vector &THETA);
plate_problem(void) : mim(mesh), mim_subint(mesh), mf_ut(mesh), mf_u3(mesh),
mf_theta(mesh), mf_rhs(mesh), mf_coef(mesh) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void plate_problem::init(void) {
std::string MESH_FILE = PARAM.string_value("MESH_FILE");
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE_UT = PARAM.string_value("FEM_TYPE_UT","FEM name");
std::string FEM_TYPE_U3 = PARAM.string_value("FEM_TYPE_U3","FEM name");
std::string FEM_TYPE_THETA = PARAM.string_value("FEM_TYPE_THETA","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
std::string INTEGRATION_CT = PARAM.string_value("INTEGRATION_CT",
"Name of integration method");
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE_UT=" << FEM_TYPE_UT << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
cout << "INTEGRATION_CT=" << INTEGRATION_CT << "\n";
/* First step : build the mesh */
size_type N;
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
if (!MESH_FILE.empty()) {
cout << "MESH_FILE=" << MESH_FILE << "\n";
mesh.read_from_file(MESH_FILE);
MESH_TYPE = bgeot::name_of_geometric_trans
(mesh.trans_of_convex(mesh.convex_index().first_true()));
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
N = mesh.dim();
} else {
N = pgt->dim();
GMM_ASSERT1(N == 2, "For a plate problem, N should be 2");
std::vector<size_type> nsubdiv(N);
std::fill(nsubdiv.begin(),nsubdiv.end(),
PARAM.int_value("NX", "Number of space steps "));
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
}
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
residual = PARAM.real_value("RESIDUAL"); if (residual == 0.) residual = 1e-10;
mitc = (PARAM.int_value("MITC", "Mitc version ?") != 0);
cout << "MITC = " ;
if (mitc) cout << "true \n" ; else cout << "false \n" ;
sol_ref = int(PARAM.int_value("SOL_REF") ) ;
study_flag = int(PARAM.int_value("STUDY_FLAG") ) ;
eta = (PARAM.real_value("ETA") );
N_Four = (PARAM.int_value("N_Four") ) ;
LX = PARAM.real_value("LX");
LY = PARAM.real_value("LY");
mu = PARAM.real_value("MU", "Lamé coefficient mu");
lambda = PARAM.real_value("LAMBDA", "Lamé coefficient lambda");
epsilon = PARAM.real_value("EPSILON", "thickness of the plate");
pressure = PARAM.real_value("PRESSURE",
"pressure on the top surface of the plate.");
cout << "SOL_REF = " ;
if (sol_ref==0) cout << "appui simple aux 2 bords verticaux\n" ;
if (sol_ref==1) cout << "encastrement aux 2 bords verticaux\n" ;
if (sol_ref==2) {
cout << "encastrement aux 4 bords verticaux, solution en sin(x)^2*sin(y)^2\n" ;
cout << "eta = " << eta <<"\n";
}
if (sol_ref==4) {
cout << "bord en appuis simple\n" ;
cout << "nombre de terme pour calcul sol exacte : " << N_Four << " \n" ;
// Calcul des coeeficients de Fourier de la solution exacte :
// Cas où le chargement est seulement vertical (pas de moment appliqué)
gmm::resize( theta1_Four, N_Four, N_Four) ;
gmm::resize( theta2_Four, N_Four, N_Four) ;
gmm::resize( u3_Four, N_Four, N_Four) ;
base_matrix Jmn(3, 3) ;
base_small_vector Bmn(3), Xmn(3) ;
scalar_type /*det_Jmn, */ A, B, e2, Pmn ;
E = 4.*mu*(mu+lambda) / (2. * mu + lambda);
nu = lambda / (2. * mu + lambda);
e2 = epsilon * epsilon / 4. ;
for(size_type i = 0 ; i < N_Four ; i++) {
for(size_type j = 0 ; j < N_Four ; j++) {
A = scalar_type(j + 1) * M_PI / LX ;
B = scalar_type(i + 1) * M_PI / LY ;
Jmn(0, 0) = 2. * A * A / (1. - nu) + B * B + 3. / e2 ;
Jmn(0, 1) = A * B * (1. +nu) / (1. - nu) ;
Jmn(0, 2) = A * 3. / e2 ;
Jmn(1, 0) = A * B * (1. +nu) / (1. - nu) ;
Jmn(1, 1) = 2. * B * B / (1. - nu) + A * A + 3. / e2 ;
Jmn(1, 2) = B * 3. / e2 ;
Jmn(2, 0) = - A ;
Jmn(2, 1) = - B ;
Jmn(2, 2) = A * A + B * B ;
gmm::scale(Jmn, - E*(epsilon/2.) / (1. + nu) ) ;
// calcul du développement de Fourrier du chargement :
if ( ( (i + 1) % 2 == 1 ) && ( (j + 1) % 2 == 1) ) {
Pmn = 16. * pressure / ( scalar_type(i + 1) * scalar_type(j + 1) * M_PI * M_PI) ; }
else {
Pmn = 0. ; }
Bmn[0] = 0. ;
Bmn[1] = 0. ;
Bmn[2] = Pmn ;
gmm::lu_solve(Jmn, Xmn, Bmn) ;
theta1_Four(i, j) = Xmn[0] ;
theta1_Four(i, j) = Xmn[1] ;
u3_Four(i, j) = Xmn[2] ;
}
}
}
mf_ut.set_qdim(dim_type(N));
mf_theta.set_qdim(dim_type(N));
/* set the finite element on the mf_u */
getfem::pfem pf_ut = getfem::fem_descriptor(FEM_TYPE_UT);
getfem::pfem pf_u3 = getfem::fem_descriptor(FEM_TYPE_U3);
getfem::pfem pf_theta = getfem::fem_descriptor(FEM_TYPE_THETA);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
getfem::pintegration_method ppi_ct =
getfem::int_method_descriptor(INTEGRATION_CT);
mim.set_integration_method(mesh.convex_index(), ppi);
mim_subint.set_integration_method(mesh.convex_index(), ppi_ct);
mf_ut.set_finite_element(mesh.convex_index(), pf_ut);
mf_u3.set_finite_element(mesh.convex_index(), pf_u3);
mf_theta.set_finite_element(mesh.convex_index(), pf_theta);
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
GMM_ASSERT1(pf_ut->is_lagrange(), "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
mf_rhs.set_finite_element(mesh.convex_index(), pf_ut);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set the finite element on mf_coef. Here we use a very simple element
* since the only function that need to be interpolated on the mesh_fem
* is f(x)=1 ... */
mf_coef.set_finite_element(mesh.convex_index(),
getfem::classical_fem(pgt,0));
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
assert(i.is_face());
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
switch(sol_ref){
case 0 :
if (gmm::abs(un[1]) <= 1.0E-7) // new Neumann face
mesh.region(SIMPLY_FIXED_BOUNDARY_NUM).add(i.cv(), i.f());
break ;
case 1 :
if (gmm::abs(un[1]) <= 1.0E-7) // new Neumann face
mesh.region(SIMPLY_FIXED_BOUNDARY_NUM).add(i.cv(), i.f());
break ;
case 2 :
if ( (gmm::abs(un[0]) <= 1.0E-7) || (gmm::abs(un[1]) <= 1.0E-7) )
mesh.region(SIMPLY_FIXED_BOUNDARY_NUM).add(i.cv(), i.f());
break ;
case 3 :
if (un[0] <= (- 1. + 1.0E-7)) // new Neumann face
mesh.region(SIMPLY_FIXED_BOUNDARY_NUM).add(i.cv(), i.f());
break ;
case 4 :
if ( (gmm::abs(un[0]) <= 1.0E-7) || (gmm::abs(un[1]) <= 1.0E-7) )
mesh.region(SIMPLY_FIXED_BOUNDARY_NUM).add(i.cv(), i.f());
break ;
default :
GMM_ASSERT1(false, "SOL_REF parameter is undefined");
break ;
}
}
}
base_small_vector plate_problem::theta_exact(base_node P) {
base_small_vector theta(2);
if (sol_ref == 0) { // appui simple aux 2 bords
theta[0] = - (-pressure / (32. * mu * epsilon * epsilon * epsilon / 8.))
* (4. * pow(P[0] - .5, 3.) - 3 * (P[0] - .5));
theta[1] = 0.;
}
if (sol_ref == 1) { // encastrement aux 2 bords
theta[0] = - (-pressure / (16. * mu * epsilon * epsilon * epsilon / 8.))
* P[0] * ( 2.*P[0]*P[0] - 3.* P[0] + 1. ) ;
theta[1] = 0.;
}
if (sol_ref == 2) { // encastrement aux 4 bords et sols vraiment 2D, non polynomiale
theta[0] = (1. + eta) * M_PI * sin(2.*M_PI*P[0]) * sin(M_PI*P[1])* sin(M_PI*P[1]) ;
theta[1] = (1. + eta) * M_PI * sin(2.*M_PI*P[1]) * sin(M_PI*P[0])* sin(M_PI*P[0]) ;
}
if (sol_ref == 3) { // plaque cantilever
theta[0] = - (- 3. * pressure / (8. * mu * epsilon * epsilon * epsilon / 8.))
* P[0] * ( 0.25 * P[0] * P[0] - P[0] + 1. ) ;
theta[1] = 0.;
}
if (sol_ref == 4) { // bord entier en appui simple
theta[0] = 0. ;
theta[1] = 0. ;
for(size_type i = 0 ; i < N_Four ; i ++) {
for(size_type j = 0 ; j < N_Four ; j ++) {
theta[0] -= theta1_Four(i, j) * cos( scalar_type(j + 1) * M_PI * P[0] / LX ) * sin( scalar_type(i + 1) * M_PI * P[1] / LY ) ;
theta[0] -= theta2_Four(i, j) * sin( scalar_type(j + 1) * M_PI * P[0] / LX ) * cos( scalar_type(i + 1) * M_PI * P[1] / LY ) ;
}
}
}
return theta;
}
scalar_type plate_problem::u3_exact(base_node P) {
switch(sol_ref) {
case 0 : return (pressure / (32. * mu * epsilon * epsilon * epsilon / 8.))
* P[0] * (P[0] - 1.)
* (gmm::sqr(P[0] - .5) -1.25-(8.* epsilon*epsilon / 4.));
break ;
case 1 : return (pressure /(32.* mu * epsilon * epsilon * epsilon / 8.))
* P[0] * (P[0] - 1.)
* ( P[0] * P[0] - P[0] - 8. * epsilon *epsilon / 4.) ;
break ;
case 2 : return gmm::sqr(sin(M_PI*P[0])) * gmm::sqr(sin(M_PI*P[1]));
break ;
case 3 : return (3. * pressure / (4. * mu * epsilon * epsilon * epsilon / 8. ))
* P[0] * ( P[0] * P[0] * P[0] / 24. - P[0] * P[0] / 6. + P[0] / 4.
- (epsilon * epsilon / 4.) * P[0] / 3.
+ 2. * (epsilon * epsilon / 4.) / 3.) ;
break ;
case 4 :
scalar_type u3_local ;
u3_local = 0. ;
for(size_type i = 0 ; i < N_Four ; i ++) {
for(size_type j = 0 ; j < N_Four ; j ++)
u3_local += u3_Four(i, j) * sin( scalar_type(j + 1) * M_PI * P[0] / LX ) * sin( scalar_type(i + 1) * M_PI * P[1] / LY ) ;
}
return (u3_local) ;
break ;
default : GMM_ASSERT1(false, "indice de solution de référence incorrect");
}
}
/* compute the error with respect to the exact solution */
void plate_problem::compute_error(plain_vector &Ut, plain_vector &U3, plain_vector &THETA) {
cout.precision(16);
if (PARAM.int_value("SOL_EXACTE") == 1) {
gmm::clear(Ut); gmm::clear(U3); gmm::clear(THETA);
}
std::vector<scalar_type> V(mf_rhs.nb_dof()*2);
getfem::interpolation(mf_ut, mf_rhs, Ut, V);
mf_rhs.set_qdim(2);
scalar_type l2 = gmm::sqr(getfem::asm_L2_norm(mim, mf_rhs, V));
scalar_type h1 = gmm::sqr(getfem::asm_H1_norm(mim, mf_rhs, V));
scalar_type linf = gmm::vect_norminf(V);
mf_rhs.set_qdim(1);
cout << "L2 error = " << sqrt(l2) << endl
<< "H1 error = " << sqrt(h1) << endl
<< "Linfty error = " << linf << endl;
getfem::interpolation(mf_theta, mf_rhs, THETA, V);
GMM_ASSERT1(!mf_rhs.is_reduced(),
"To be adapted, use interpolation_function");
for (size_type i = 0; i < mf_rhs.nb_dof(); ++i) {
gmm::add(gmm::scaled(theta_exact(mf_rhs.point_of_basic_dof(i)), -1.0),
gmm::sub_vector(V, gmm::sub_interval(i*2, 2)));
}
mf_rhs.set_qdim(2);
l2 += gmm::sqr(getfem::asm_L2_norm(mim, mf_rhs, V));
h1 += gmm::sqr(getfem::asm_H1_semi_norm(mim, mf_rhs, V));
linf = std::max(linf, gmm::vect_norminf(V));
mf_rhs.set_qdim(1);
cout << "L2 error theta:" << sqrt(l2) << endl
<< "H1 error theta:" << sqrt(h1) << endl
<< "Linfty error = " << linf << endl;
gmm::resize(V, mf_rhs.nb_dof());
getfem::interpolation(mf_u3, mf_rhs, U3, V);
for (size_type i = 0; i < mf_rhs.nb_dof(); ++i)
V[i] -= u3_exact(mf_rhs.point_of_basic_dof(i));
l2 = gmm::sqr(getfem::asm_L2_norm(mim, mf_rhs, V));
h1 = gmm::sqr(getfem::asm_H1_semi_norm(mim, mf_rhs, V));
linf = std::max(linf, gmm::vect_norminf(V));
cout.precision(16);
cout << "L2 error u3:" << sqrt(l2) << endl
<< "H1 error u3:" << sqrt(h1) << endl
<< "Linfty error = " << linf << endl;
// stockage de l'erreur H1 :
if (PARAM.int_value("SAUV")){
std::ofstream f_out("errH1.don");
if (!f_out) throw std :: runtime_error("Impossible to open file") ;
f_out << sqrt(h1) << "\n" ;
}
}
/**************************************************************************/
/* Model. */
/**************************************************************************/
bool plate_problem::solve(plain_vector &Ut, plain_vector &U3, plain_vector &THETA) {
size_type nb_dof_rhs = mf_rhs.nb_dof();
cout << "Number of dof for ut: " << mf_ut.nb_dof() << endl;
cout << "Number of dof for u3: " << mf_u3.nb_dof() << endl;
cout << "Number of dof for theta: " << mf_theta.nb_dof() << endl;
E = 4.*mu*(mu+lambda) / (2. * mu + lambda);
nu = lambda / (2. * mu + lambda);
scalar_type kappa = 5./6.;
getfem::model md;
md.add_fem_variable("ut", mf_ut);
md.add_fem_variable("u3", mf_u3);
md.add_fem_variable("theta", mf_theta);
// Linearized plate brick.
md.add_initialized_scalar_data("E", E);
md.add_initialized_scalar_data("nu", nu);
md.add_initialized_scalar_data("lambda", lambda);
md.add_initialized_scalar_data("mu", mu);
md.add_initialized_scalar_data("epsilon", epsilon);
md.add_initialized_scalar_data("kappa", kappa);
getfem::add_Mindlin_Reissner_plate_brick(md, mim, mim_subint, "u3", "theta",
"E", "nu", "epsilon", "kappa",
(mitc) ? 2 : 1);
getfem::add_isotropic_linearized_elasticity_brick(md, mim, "ut", "lambda", "mu");
// Defining the surface source term.
if (study_flag == 1 ){
cout << "Attention : l'intensité de la pression verticale " ;
cout << "a été choisie pour que le déplacement maximal soit unitaire." ;
cout << "Pour annuler cette option, faire STUDY_FLAG = 0\n" ;
switch(sol_ref) {
case 0 :
pressure = 128. * mu * epsilon * epsilon * epsilon / 8. ;
pressure /= 1.25 + 8. * epsilon * epsilon / 4. ;
break ;
case 1 :
pressure = 128. * mu * epsilon * epsilon * epsilon / 8. ;
pressure /= 0.25 + 8. * epsilon * epsilon / 4. ;
break ;
case 3 :
pressure = 32. * mu * epsilon * epsilon * epsilon / 8.;
pressure /= 3. + 8. * epsilon * epsilon / 4.;
default :
break ;
}
}
plain_vector F(nb_dof_rhs);
plain_vector M(nb_dof_rhs * 2);
if (sol_ref == 2) {
base_small_vector P(2) ;
scalar_type sx, sy, cx, cy, s2x, s2y, c2x, c2y ;
E = 4.*mu*(mu+lambda) / (2. * mu + lambda);
nu = lambda / (2. * mu + lambda);
for (size_type i = 0; i < nb_dof_rhs; ++i) {
P = mf_rhs.point_of_basic_dof(i);
sx = sin(M_PI*P[0]) ;
cx = cos(M_PI*P[0]) ;
sy = sin(M_PI*P[1]) ;
cy = cos(M_PI*P[1]) ;
c2x = cos(2.*M_PI*P[0]) ;
c2y = cos(2.*M_PI*P[1]) ;
s2x = sin(2.*M_PI*P[0]) ;
s2y = sin(2.*M_PI*P[1]) ;
F[i] = 2. * (epsilon / 2.) * E * M_PI * M_PI * eta *
( sy * sy * c2x + sx * sx * c2y ) / ( 1. + nu ) ;
M[2*i] = -((epsilon * epsilon * epsilon / 8.) * E * M_PI * s2x / 3. / (1. + nu))
* ( (4. * M_PI * M_PI * (1. + eta) * (2. * c2y - 1.) / (1.- nu))
- 3. * eta * sy * sy / (epsilon/2.) / (epsilon/2.) ) ;
M[2*i+1] = -((epsilon * epsilon * epsilon/8.) * E * M_PI * s2y / 3. / (1. + nu))
* ( (4. * M_PI * M_PI * (1. + eta) * (2. * c2x - 1.) / (1.- nu))
- 3. * eta * sx * sx / (epsilon/2.) / (epsilon/2.) ) ;
}
}
else // sol_ref = 0 ou 1 ou 3 ou 4: pression verticale uniforme
for (size_type i = 0; i < nb_dof_rhs; ++i) {
F[i] = pressure;
}
md.add_initialized_fem_data("VF", mf_rhs, F);
getfem::add_source_term_brick(md, mim, "u3", "VF");
md.add_initialized_fem_data("VM", mf_rhs, M);
getfem::add_source_term_brick(md, mim, "theta", "VM");
getfem::add_Dirichlet_condition_with_multipliers
(md, mim, "u3", mf_u3, SIMPLY_FIXED_BOUNDARY_NUM);
getfem::add_Dirichlet_condition_with_multipliers
(md, mim, "ut", mf_ut, SIMPLY_FIXED_BOUNDARY_NUM);
if (sol_ref == 1 || sol_ref == 2 || sol_ref == 3)
getfem::add_Dirichlet_condition_with_multipliers
(md, mim, "theta", mf_ut, SIMPLY_FIXED_BOUNDARY_NUM);
// Generic solve.
gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(md, iter);
gmm::resize(Ut, mf_ut.nb_dof());
gmm::copy(md.real_variable("ut"), Ut);
gmm::resize(U3, mf_u3.nb_dof());
gmm::copy(md.real_variable("u3"), U3);
gmm::resize(THETA, mf_theta.nb_dof());
gmm::copy(md.real_variable("theta"), THETA);
if (PARAM.int_value("VTK_EXPORT")) {
cout << "export to " << datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(datafilename + ".vtk",
PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(mf_u3);
exp.write_point_data(mf_u3, U3, "plate_normal_displacement");
cout << "export done, you can view the data file with (for example)\n"
"mayavi2 -d " << datafilename << ".vtk -f "
"WarpScalar -m Surface -m Outline\n";
// cout << "export done, you can view the data file with (for example)\n"
// "mayavi -d " << datafilename << ".vtk -f ExtractVectorNorm -f "
// "WarpVector -m BandedSurfaceMap -m Outline\n";
}
if (PARAM.int_value("DX_EXPORT")) {
cout << "export to " << datafilename + ".dx" << ".\n";
getfem::dx_export exp(datafilename + ".dx",
PARAM.int_value("DX_EXPORT")==1);
exp.exporting(mf_u3);
exp.write_point_data(mf_u3, U3, "plate_normal_displacement");
}
return (iter.converged());
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv);
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
try {
plate_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
if ((p.study_flag != 1)&&((p.sol_ref == 0) || (p.sol_ref ==1)))
p.pressure *= p.epsilon * p.epsilon * p.epsilon / 8.;
p.mesh.write_to_file(p.datafilename + ".mesh");
plain_vector Ut, U3, THETA;
bool ok = p.solve(Ut, U3, THETA);
p.compute_error(Ut, U3, THETA);
GMM_ASSERT1(ok, "Solve has failed");
}
GMM_STANDARD_CATCH_ERROR;
GETFEM_MPI_FINALIZE;
return 0;
}
|