File: stokes.cc

package info (click to toggle)
getfem 5.4.4%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,640 kB
  • sloc: cpp: 126,151; ansic: 24,798; python: 9,244; sh: 3,648; perl: 1,829; makefile: 1,367
file content (241 lines) | stat: -rw-r--r-- 9,330 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*===========================================================================

 Copyright (C) 2002-2020 Yves Renard, Julien Pommier.

 This file is a part of GetFEM

 GetFEM  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

===========================================================================*/

/**
   @file stokes.cc
   @brief Solve the stokes problem (incompressible viscuous fluid).
   
   This program is used to check that getfem++ is working. This is also 
   a good example of use of GetFEM.
   
   This file is almost identical to @link elastostatic.cc
   tests/elastostatic.cc@endlink, except than a
   linear incompressibility brick is inserted.
*/

#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_export.h"   /* export functions (save solution in a file)  */
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "gmm/gmm.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;

/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node;  /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type;   /* = unsigned long */
using bgeot::base_matrix; /* small dense matrix. */

/* definition of some matrix/vector types. These ones are built
 * using the predefined types in Gmm++
 */
typedef getfem::modeling_standard_sparse_vector sparse_vector;
typedef getfem::modeling_standard_sparse_matrix sparse_matrix;
typedef getfem::modeling_standard_plain_vector  plain_vector;

/*
 * structure for the stokes problem
 */
struct stokes_problem {

  enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1};
  getfem::mesh mesh;         /* the mesh */
  getfem::mesh_im  mim;      /* integration methods.                         */
  getfem::mesh_fem mf_u;     /* main mesh_fem, for the velocity              */
  getfem::mesh_fem mf_p;     /* mesh_fem for the pressure                    */
  getfem::mesh_fem mf_rhs;   /* mesh_fem for the right hand side (f(x),..)   */
  scalar_type nu;            /* Lam coefficients.                           */

  scalar_type residual;        /* max residual for the iterative solvers         */

  std::string datafilename;
  bgeot::md_param PARAM;

  bool solve(plain_vector &U);
  void init(void);
  stokes_problem(void) : mim(mesh), mf_u(mesh), mf_p(mesh),
			 mf_rhs(mesh) {}
};

/* Read parameters from the .param file, build the mesh, set finite element
 * and integration methods and selects the boundaries.
 */
void stokes_problem::init(void) {
  std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
  std::string FEM_TYPE  = PARAM.string_value("FEM_TYPE","FEM name");
  std::string FEM_TYPE_P  = PARAM.string_value("FEM_TYPE_P","FEM name P");
  std::string INTEGRATION = PARAM.string_value("INTEGRATION",
					       "Name of integration method");
  cout << "MESH_TYPE=" << MESH_TYPE << "\n";
  cout << "FEM_TYPE="  << FEM_TYPE << "\n";
  cout << "INTEGRATION=" << INTEGRATION << "\n";

  /* First step : build the mesh */
  bgeot::pgeometric_trans pgt = 
    bgeot::geometric_trans_descriptor(MESH_TYPE);
  size_type N = pgt->dim();
  std::vector<size_type> nsubdiv(N);
  std::fill(nsubdiv.begin(),nsubdiv.end(),
	    PARAM.int_value("NX", "Nomber of space steps "));
  getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
			    PARAM.int_value("MESH_NOISED") != 0);
  
  /* scale the unit mesh to [LX,LY,..] and incline it */
   bgeot::base_matrix M(N,N);
  for (size_type i=0; i < N; ++i) {
    static const char *t[] = {"LX","LY","LZ"};
    M(i,i) = (i<3) ? PARAM.real_value(t[i],t[i]) : 1.0;
  }
  mesh.transformation(M);

  datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
  residual = PARAM.real_value("RESIDUAL"); if (residual == 0.) residual = 1e-10;

  nu = PARAM.real_value("NU", "Viscosit");
  mf_u.set_qdim(bgeot::dim_type(N));

  /* set the finite element on the mf_u */
  getfem::pfem pf_u = 
    getfem::fem_descriptor(FEM_TYPE);
  getfem::pintegration_method ppi = 
    getfem::int_method_descriptor(INTEGRATION); 

  mim.set_integration_method(mesh.convex_index(), ppi);
  mf_u.set_finite_element(mesh.convex_index(), pf_u);
  mf_p.set_finite_element(mesh.convex_index(),
			  getfem::fem_descriptor(FEM_TYPE_P));

  /* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
     not used in the .param file */
  std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
  if (data_fem_name.size() == 0) {
    GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM "
		<< data_fem_name << ". In that case you need to set "
		<< "DATA_FEM_TYPE in the .param file");
    mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
  } else {
    mf_rhs.set_finite_element(mesh.convex_index(), 
			      getfem::fem_descriptor(data_fem_name));
  }
  
  /* set boundary conditions
   * (Neuman on the upper face, Dirichlet elsewhere) */
  cout << "Selecting Neumann and Dirichlet boundaries\n";
  getfem::mesh_region border_faces;
  getfem::outer_faces_of_mesh(mesh, border_faces);
  for (getfem::mr_visitor it(border_faces); !it.finished(); ++it) {
    assert(it.is_face());
    base_node un = mesh.normal_of_face_of_convex(it.cv(), it.f());
    un /= gmm::vect_norm2(un);
    if (gmm::abs(un[N-1] - 1.0) < 1.0E-7) { // new Neumann face
      mesh.region(NEUMANN_BOUNDARY_NUM).add(it.cv(), it.f());
    } else {
      mesh.region(DIRICHLET_BOUNDARY_NUM).add(it.cv(), it.f());
    }
  }
}

/**************************************************************************/
/*  Model.                                                                */
/**************************************************************************/

base_small_vector sol_f(const base_small_vector &P) {
  base_small_vector res(P.size());
  res[P.size()-1] = -1.0;
  return res;
}


bool stokes_problem::solve(plain_vector &U) {
  size_type N = mesh.dim();

  getfem::model model;

  // Main unknown of the problem.
  model.add_fem_variable("u", mf_u);

  // Linearized elasticity brick.
  model.add_initialized_fixed_size_data
    ("lambda", plain_vector(1, 0.0));
  model.add_initialized_fixed_size_data("nu", plain_vector(1, nu));
  getfem::add_isotropic_linearized_elasticity_brick
    (model, mim, "u", "lambda", "nu");

  // Linearized incompressibility condition brick.
  model.add_fem_variable("p", mf_p); // Adding the pressure as a variable
  add_linear_incompressibility(model, mim, "u", "p");

  // Volumic source term.
  std::vector<scalar_type> F(mf_rhs.nb_dof()*N);
  getfem::interpolation_function(mf_rhs, F, sol_f);
  model.add_initialized_fem_data("VolumicData", mf_rhs, F);
  getfem::add_source_term_brick(model, mim, "u", "VolumicData");

  // Dirichlet condition.
  gmm::clear(F);
  model.add_initialized_fem_data("DirichletData", mf_rhs, F);
  getfem::add_Dirichlet_condition_with_multipliers
    (model, mim, "u", mf_u, DIRICHLET_BOUNDARY_NUM, "DirichletData");

  gmm::iteration iter(residual, 1, 40000);
  getfem::standard_solve(model, iter);

  // Solution extraction
  gmm::copy(model.real_variable("u"), U);
  
  return (iter.converged());
}

/**************************************************************************/
/*  main program.                                                         */
/**************************************************************************/

int main(int argc, char *argv[]) {

  GETFEM_MPI_INIT(argc, argv);
  GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
  FE_ENABLE_EXCEPT;        // Enable floating point exception for Nan.

  try {    
    stokes_problem p;
    p.PARAM.read_command_line(argc, argv);
    p.init();
    // p.mesh.write_to_file(p.datafilename + ".mesh");
    plain_vector U(p.mf_u.nb_dof());
    if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");
    if (p.PARAM.int_value("VTK_EXPORT")) {
      cout << "export to " << p.datafilename + ".vtk" << "..\n";
      getfem::vtk_export exp(p.datafilename + ".vtk",
			     p.PARAM.int_value("VTK_EXPORT")==1);
      exp.exporting(p.mf_u); 
      exp.write_point_data(p.mf_u, U, "stokes_displacement");
      cout << "export done, you can view the data file with (for example)\n"
	"mayavi2 -d " << p.datafilename << ".vtk -f ExtractVectorNorm -f "
	"WarpVector -m Surface -m Outline\n";
    }
  }
  GMM_STANDARD_CATCH_ERROR;
  GETFEM_MPI_FINALIZE;

  return 0; 
}