1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
/*===========================================================================
Copyright (C) 2007-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include "getfem/getfem_export.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#ifdef GETFEM_HAVE_SYS_TIMES
# include <sys/times.h>
#endif
#include <unistd.h>
#include <iomanip>
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
using getfem::scalar_type;
using getfem::size_type;
using getfem::short_type;
using getfem::dim_type;
using getfem::mesh;
using getfem::mesh_fem;
using getfem::pfem;
using getfem::base_node;
using bgeot::base_small_vector;
using std::setw;
bool quick = false;
#ifdef GETFEM_HAVE_SYS_TIMES
struct chrono {
struct ::tms t;
::clock_t t_elapsed;
float cpu_, elapsed_, system_;
float nbclocktk;
public:
chrono() { nbclocktk = ::sysconf(_SC_CLK_TCK); init(); }
chrono& init() { elapsed_=0; cpu_=0; system_ =0; return *this; }
void tic() { t_elapsed = ::times(&t); }
chrono& toc() {
struct tms t2; ::clock_t t2_elapsed = ::times(&t2);
elapsed_ += (t2_elapsed - t_elapsed) / nbclocktk;
cpu_ += (t2.tms_utime - t.tms_utime) / nbclocktk;
system_ += (t2.tms_stime - t.tms_stime) / nbclocktk;
memcpy(&t, &t2, sizeof(struct tms));
return *this;
}
float cpu() const { return cpu_; }
float elapsed() const { return elapsed_; }
float system() const { return system_; }
};
#else
struct chrono {
float t,cpu_;
public:
chrono() { }
chrono& init() { cpu_=0; return *this; }
void tic() { t = float(gmm::uclock_sec()); }
chrono& toc() {
float t2 = float(gmm::uclock_sec());
cpu_ += t2 - t; t = t2; return *this;
}
float cpu() const { return cpu_; }
float elapsed() const { return cpu_; }
float system() const { return 0.; }
};
#endif
scalar_type func(const base_node& x) {
return sin(x[0])*cos(x[1]+x[0]/3.);
}
/* deformation inside a square */
base_node shake_func(const base_node& x) {
base_node z(x.size());
scalar_type c1 = 1., c2 = 1.;
for (size_type i=0; i < x.size(); ++i) {
c1*=(x[i]*(1.-x[i]));
c2*=(.5 - gmm::abs(x[i]-.5));
}
z[0] = x[0] + c1;
for (size_type i=1; i < x.size(); ++i) {
z[i] = x[i] + c2/10.;
}
return z;
}
void build_mesh(mesh& m, int MESH_TYPE, size_type dim, size_type N,
size_type NX, size_type K, bool noised) {
mesh msh;
base_node org(N); gmm::clear(org);
std::vector<base_small_vector> vtab(N);
std::vector<size_type> ref(N); std::fill(ref.begin(), ref.end(), NX);
for (dim_type i = 0; i < N; i++) {
vtab[i] = base_small_vector(N); gmm::clear(vtab[i]);
(vtab[i])[i] = 1. / scalar_type(NX) * 1.;
}
switch (MESH_TYPE) {
case 0 : getfem::parallelepiped_regular_simplex_mesh
(msh, dim_type(N), org, vtab.begin(), ref.begin()); break;
case 1 : getfem::parallelepiped_regular_mesh
(msh, dim_type(N), org, vtab.begin(), ref.begin()); break;
case 2 : getfem::parallelepiped_regular_prism_mesh
(msh, dim_type(N), org, vtab.begin(), ref.begin()); break;
default: GMM_ASSERT1(false, "invalid mesh type\n");
}
msh.optimize_structure();
m.clear();
/* build a mesh with a geotrans of degree K */
{
bgeot::pgeometric_trans pgt;
switch (MESH_TYPE) {
case 0: pgt = bgeot::simplex_geotrans(dim_type(N),short_type(K)); break;
case 1: pgt = bgeot::parallelepiped_geotrans(dim_type(N),short_type(K)); break;
case 2: pgt = bgeot::prism_geotrans(dim_type(N),short_type(K)); break;
default: assert(0);
}
for (dal::bv_visitor cv(msh.convex_index()); !cv.finished(); ++cv) {
if (K == 1) {
m.add_convex_by_points(msh.trans_of_convex(cv), msh.points_of_convex(cv).begin());
} else {
std::vector<base_node> pts(pgt->nb_points());
for (size_type i=0; i < pgt->nb_points(); ++i) {
pts[i] = msh.trans_of_convex(cv)->transform(pgt->convex_ref()->points()[i],
msh.points_of_convex(cv));
}
m.add_convex_by_points(pgt, pts.begin());
}
}
}
/* apply a continuous deformation + some noise */
if (noised) {
for (dal::bv_visitor ip(m.points().index()); !ip.finished(); ++ip) {
bool is_border = false;
base_node& P = m.points()[ip];
for (size_type i=0; i < N; ++i) { if (gmm::abs(P[i]) < 1e-10 || gmm::abs(P[i]-1.) < 1e-10) is_border = true; }
if (!is_border) {
P = shake_func(P);
for (size_type i=0; i < N; ++i) P[i] += 0.05*(1./double(NX))*gmm::random(double());
}
}
}
/* add other dimensions to the points */
assert(dim >= N);
if (dim > N) {
getfem::base_matrix T(dim,N);
for (unsigned i=0; i < N; ++i) T(i,i) = 1;
for (unsigned i=unsigned(N); i < dim; ++i) T(i, i%N) = -.5;
m.transformation(T);
assert(m.dim() == dim);
}
}
typedef gmm::col_matrix<gmm::rsvector<scalar_type> > rsc_matrix;
typedef gmm::row_matrix<gmm::rsvector<scalar_type> > rsr_matrix;
typedef gmm::col_matrix<gmm::wsvector<scalar_type> > wsc_matrix;
typedef gmm::row_matrix<gmm::wsvector<scalar_type> > wsr_matrix;
scalar_type interpolate_check(const mesh_fem &mf1, const mesh_fem& mf2, int i, int mat_version) {
static std::unique_ptr<rsc_matrix> rsc12, rsc21;
static std::unique_ptr<rsr_matrix> rsr12, rsr21;
static std::unique_ptr<wsr_matrix> wsr12, wsr21;
static std::unique_ptr<wsc_matrix> wsc12, wsc21;
if (i == 0) {
switch (mat_version) {
case 0: break;
case 1:
rsc12 = std::make_unique<rsc_matrix>(mf2.nb_dof(), mf1.nb_dof());
rsc21 = std::make_unique<rsc_matrix>(mf1.nb_dof(), mf2.nb_dof());
getfem::interpolation(mf1, mf2, *rsc12);
getfem::interpolation(mf2, mf1, *rsc21);
return 0.;
case 2:
rsr12 = std::make_unique<rsr_matrix>(mf2.nb_dof(), mf1.nb_dof());
rsr21 = std::make_unique<rsr_matrix>(mf1.nb_dof(), mf2.nb_dof());
getfem::interpolation(mf1, mf2, *rsr12);
getfem::interpolation(mf2, mf1, *rsr21);
return 0.;
case 3:
wsc12 = std::make_unique<wsc_matrix>(mf2.nb_dof(), mf1.nb_dof());
wsc21 = std::make_unique<wsc_matrix>(mf1.nb_dof(), mf2.nb_dof());
getfem::interpolation(mf1, mf2, *wsc12);
getfem::interpolation(mf2, mf1, *wsc21);
return 0.;
case 4:
wsr12 = std::make_unique<wsr_matrix>(mf2.nb_dof(), mf1.nb_dof());
wsr21 = std::make_unique<wsr_matrix>(mf1.nb_dof(), mf2.nb_dof());
getfem::interpolation(mf1, mf2, *wsr12);
getfem::interpolation(mf2, mf1, *wsr21);
return 0.;
default: assert(0);
}
}
std::vector<scalar_type> U(mf1.nb_dof()), U2(mf1.nb_dof());
std::vector<scalar_type> V(mf2.nb_dof());
for (size_type d=0; d < mf1.nb_dof(); ++d)
U[d] = func(mf1.point_of_basic_dof(d));
switch (mat_version) {
case 0: getfem::interpolation(mf1,mf2,U,V);
getfem::interpolation(mf2,mf1,V,U2);
break;
case 1: gmm::mult(*(rsc12.get()), U, V);
gmm::mult(*(rsc21.get()), V, U2); break;
case 2: gmm::mult(*(rsr12.get()), U, V);
gmm::mult(*(rsr21.get()), V, U2); break;
case 3: gmm::mult(*(wsc12.get()), U, V);
gmm::mult(*(wsc21.get()), V, U2); break;
case 4: gmm::mult(*(wsr12.get()), U, V);
gmm::mult(*(wsr21.get()), V, U2); break;
}
gmm::add(gmm::scaled(U,-1.),U2);
return gmm::vect_norminf(U2)/gmm::vect_norminf(U);
}
void test_same_mesh(int mat_version, size_type N, size_type NX, size_type K, size_type Qdim1=1, size_type Qdim2=1) {
chrono c;
cout << " Same simplex mesh, N=" << N << ", NX=" << setw(3) << NX
<< ", P" << K << "<->P" << K+1 << ":"; cout.flush();
mesh m;
build_mesh(m, 0, N, N, NX, K, false);
mesh_fem mf1(m,dim_type(Qdim1));
mf1.set_finite_element(getfem::PK_fem(dim_type(N),short_type(K)));
mesh_fem mf2(m,dim_type(Qdim2));
mf2.set_finite_element(getfem::PK_fem(dim_type(N),short_type(K+1)));
/* force evaluation of a number of things which are not part of interpolation */
size_type d = mf1.nb_dof(); d -= mf2.nb_dof();
double err = 0.;
for (int i=0; i<3; ++i) { /* To mitigate the cost of mesh generation etc. (has a significant impact). */
c.init().tic();
double err2 = interpolate_check(mf1, mf2, i, mat_version);
if (i==0 || (mat_version > 0 && i == 1)) err = err2;
else GMM_ASSERT1(err == err2, "");
printf(" %5.1f ", c.toc().cpu()*1000.); //cout << " " << setw(4) << c.toc().cpu();
cout.flush();
}
cout << " ms/interpolation -- rel.err = " << err << "\n";
assert(err < 1e-8);
}
void test_different_mesh(int mat_version, size_type dim, size_type N, size_type NX, size_type K) {
chrono c; c.init();
cout << " Different meshes, dim=" << dim << " N=" << N << ", NX=" << setw(3) << NX
<< ", P" << K << ":"; cout.flush();
mesh m1, m2;
size_type gK=1;
build_mesh(m1, 0, dim, N, NX, gK, true);
build_mesh(m2, 0, dim, N, NX, gK, true);
mesh_fem mf1(m1); mf1.set_finite_element(getfem::PK_fem(dim_type(N),short_type(K)));
mesh_fem mf2(m2); mf2.set_finite_element(getfem::PK_fem(dim_type(N),short_type(K)));
/* force evaluation of a number of things which are not part of interpolation */
size_type d = mf1.nb_dof(); d -= mf2.nb_dof();
double err = 0;
for (int i=0; i<3; ++i) { /* To mitigate the cost of mesh generation etc. (has a significant impact). */
c.init().tic();
double err2 = interpolate_check(mf1, mf2, i, mat_version);
if (i==0 || (mat_version > 0 && i == 1)) err = err2;
else GMM_ASSERT1(err == err2, "");
printf(" %5.1f ", c.toc().cpu()*1000.); //cout << " " << setw(4) << c.toc().cpu();
cout.flush();
}
cout << " ms/interpolation -- rel.err = " << err << "\n";
//mf1.write_to_file("toto.mf",true);
}
void test0() {
mesh m1, m2;
std::stringstream ss1("BEGIN POINTS LIST\n"
" POINT 0 2.5 0.6\n"
" POINT 1 5 0\n"
" POINT 2 2.5 1.8\n"
" POINT 3 3.2 1.5\n"
" POINT 4 2.1 1.8\n"
" POINT 5 2.1 3\n"
" POINT 6 2.7 2.4\n"
"END POINTS LIST\n\n"
"BEGIN MESH STRUCTURE DESCRIPTION\n"
"CONVEX 0 \'GT_QK(2,1)\' 0 1 2 3\n"
"CONVEX 1 \'GT_QK(2,1)\' 4 2 5 6\n"
"END MESH STRUCTURE DESCRIPTION");
m1.read_from_file(ss1);
std::stringstream ss2("BEGIN POINTS LIST\n"
" POINT 0 3.809523809523809 0.2857142857142857\n"
" POINT 1 5 0\n"
" POINT 2 3.2 1.5\n"
" POINT 3 3.092307692307692 1.361538461538462\n"
" POINT 4 2.92 1.62\n"
" POINT 5 2.52 2.22\n"
" POINT 6 2.6 2.1\n"
" POINT 7 2.7 2.4\n"
" POINT 8 2.1 2.85\n"
" POINT 9 2.1 3\n"
"END POINTS LIST\n"
"BEGIN MESH STRUCTURE DESCRIPTION\n"
"CONVEX 0 \'GT_PK(2,1)\' 0 1 2\n"
"CONVEX 1 \'GT_PK(2,1)\' 3 0 2\n"
"CONVEX 2 \'GT_PK(2,1)\' 4 3 2\n"
"CONVEX 3 \'GT_PK(2,1)\' 5 6 7\n"
"CONVEX 4 \'GT_PK(2,1)\' 8 5 7\n"
"CONVEX 5 \'GT_PK(2,1)\' 9 8 7\n"
"END MESH STRUCTURE DESCRIPTION\n");
m2.read_from_file(ss2);
mesh_fem mf1(m1,1), mf2(m2,1);
mf1.set_finite_element(getfem::fem_descriptor("FEM_QK(2,1)"));
mf2.set_finite_element(getfem::fem_descriptor("FEM_PK(2,1)"));
rsc_matrix M(mf2.nb_dof(), mf1.nb_dof());
getfem::interpolation(mf1, mf2, M);
}
/* this test is raising a dimension mismatch except in bgeot::geotrans_inv_convex::invert_nonlin
at line 123 gmm::mult(gmm::transposed(K), rn, vres);
K is 2x3 , rn size is 3, vres is 3
*/
void testDim_3D() {
std::stringstream sm1("BEGIN POINTS LIST\n"
"POINT 0 2 -1.5 0\n"
"POINT 1 3.1 -1.5 0\n"
"POINT 2 2.1 -0.5 0\n"
"POINT 3 3.3 -0.4 0\n"
"END POINTS LIST\n"
"BEGIN MESH STRUCTURE DESCRIPTION\n"
"CONVEX 0 'GT_QK(2,1)' 0 1 2 3\n"
"END MESH STRUCTURE DESCRIPTION\n");
std::stringstream sm2("BEGIN POINTS LIST\n"
"\n"
"POINT 0 2.841036604023573 -0.7909688187947341 0\n"
"POINT 1 2.625 -0.975 0\n"
"POINT 2 2.672953683840865 -0.639324213113946 0\n"
"POINT 3 2.100005908812348 -0.9978258300516371 0\n"
"POINT 4 2.236730472703533 -1.301146402929032 0\n"
"POINT 5 2.898295977980105 -0.9631175661747781 0\n"
"POINT 6 2.565046316159135 -1.394675786886054 0\n"
"\n"
"END POINTS LIST\n"
"\n"
"BEGIN MESH STRUCTURE DESCRIPTION\n"
"\n"
"CONVEX 0 'GT_PK(2,1)' 0 1 2\n"
"CONVEX 1 'GT_PK(2,1)' 2 1 3\n"
"CONVEX 2 'GT_PK(2,1)' 1 4 3\n"
"CONVEX 3 'GT_PK(2,1)' 0 1 5\n"
"CONVEX 4 'GT_PK(2,1)' 5 1 6\n"
"CONVEX 5 'GT_PK(2,1)' 1 4 6\n"
"\n"
"END MESH STRUCTURE DESCRIPTION\n");
std::stringstream smf1("BEGIN MESH_FEM\n"
"\n"
"QDIM 1\n"
"CONVEX 0 'FEM_QK(2,1)'\n"
"BEGIN DOF_ENUMERATION\n"
"0: 0 1 2 3\n"
"END DOF_ENUMERATION\n"
"END MESH_FEM\n");
std::stringstream smf2("BEGIN MESH_FEM\n"
"\n"
"QDIM 1\n"
"CONVEX 0 'FEM_PK(2,1)'\n"
"CONVEX 1 'FEM_PK(2,1)'\n"
"CONVEX 2 'FEM_PK(2,1)'\n"
"CONVEX 3 'FEM_PK(2,1)'\n"
"CONVEX 4 'FEM_PK(2,1)'\n"
"CONVEX 5 'FEM_PK(2,1)'\n"
"BEGIN DOF_ENUMERATION\n"
"0: 0 1 2\n"
"1: 2 1 4\n"
"2: 1 5 4\n"
"3: 0 1 3\n"
"4: 3 1 6\n"
"5: 1 5 6\n"
"END DOF_ENUMERATION\n"
"END MESH_FEM\n");
mesh m1, m2;
m1.read_from_file(sm1);
m2.read_from_file(sm2);
mesh_fem mf1(m1), mf2(m2);
mf1.read_from_file(smf1);
mf2.read_from_file(smf2);
std::vector<double> U(mf1.nb_dof()); gmm::fill(U, 1.0);
std::vector<double> V(mf2.nb_dof());
getfem::interpolation(mf1, mf2, U, V);
cerr << "Ok, it works !\n";
}
int main(int argc, char *argv[]) {
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
if (argc == 2 && strcmp(argv[1],"-quick")==0) quick = true;
testDim_3D();
test0();
for (int mat_version = 0; mat_version < 5; ++mat_version) {
const char *msg[] = {"Testing interpolation",
"Testing stored interpolator in rsc matrix",
"Testing stored interpolator in rsr matrix",
"Testing stored interpolator in wsc matrix",
"Testing stored interpolator in wsr matrix"};
cout << msg[mat_version] << "..\n";
test_same_mesh(mat_version, 2,quick ? 17 : 80,1);
test_same_mesh(mat_version, 2,quick ? 8 : 20,4);
test_same_mesh(mat_version, 3,quick ? 5 : 15,1);
test_different_mesh(mat_version, 2, 2, quick ? 17 : 80,1);
test_different_mesh(mat_version, 3, 3, quick ? 6 : 15,1);
if (mat_version == 0) {
test_different_mesh(0, 2, 1, 100, 2);
test_different_mesh(0, 3, 1, 500, 1);
test_different_mesh(0, 3, 2, quick ? 8 : 50, 2);
}
}
}
|