1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*===========================================================================
Copyright (C) 2007-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include "getfem/getfem_mesh_im_level_set.h"
#include "getfem/getfem_mesh_im_level_set.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::base_matrix; /* small dense matrix. */
void test_2d() {
getfem::mesh m; m.read_from_file("meshes/disc_2D_degree3.mesh");
getfem::mesh_fem mf(m);
getfem::mesh_level_set mls(m);
getfem::mesh_im_level_set mim(mls, getfem::mesh_im_level_set::INTEGRATE_ALL,
getfem::int_method_descriptor("IM_TRIANGLE(6)"));
getfem::level_set ls1(m, 2), ls2(m, 2), ls3(m, 2);
const getfem::mesh_fem &ls1mf = ls1.get_mesh_fem();
scalar_type R1=.4;
for (unsigned i=0; i < ls1mf.nb_dof(); ++i) {
ls1.values()[i] = gmm::vect_dist2_sqr(ls1mf.point_of_basic_dof(i),
getfem::base_node(0,0)) -R1*R1;
}
const getfem::mesh_fem &ls2mf = ls2.get_mesh_fem();
scalar_type R2=.1;
for (unsigned i=0; i < ls2mf.nb_dof(); ++i) {
ls2.values()[i] = gmm::vect_dist2_sqr(ls2mf.point_of_basic_dof(i),
getfem::base_node(0,0.3)) -R2*R2;
}
const getfem::mesh_fem &ls3mf = ls3.get_mesh_fem();
scalar_type R3=.08;
for (unsigned i=0; i < ls3mf.nb_dof(); ++i) {
ls3.values()[i] = -gmm::vect_dist2_sqr(ls3mf.point_of_basic_dof(i),
getfem::base_node(0,0.48)) +R3*R3;
}
mim.set_integration_method(m.convex_index(),
getfem::int_method_descriptor("IM_TRIANGLE(6)"));
scalar_type area(0);
base_matrix G;
for (dal::bv_visitor i(m.convex_index()); !i.finished(); ++i) {
getfem::papprox_integration pai
= mim.int_method_of_element(i)->approx_method();
bgeot::vectors_to_base_matrix(G, m.points_of_convex(i));
bgeot::geotrans_interpolation_context c(m.trans_of_convex(i),
pai->point(0), G);
for (size_type j = 0; j < pai->nb_points_on_convex(); ++j) {
c.set_xref(pai->point(j));
if (gmm::vect_norm2(c.xreal()) <= R1) area += pai->coeff(j) * c.J();
}
}
cout << "Area of largest circle : " << area
<< " compared to exact value : " << M_PI*R1*R1 << endl;
mls.add_level_set(ls1);
mls.add_level_set(ls2);
mls.add_level_set(ls3);
mls.adapt(); mim.adapt();
// Test computing the area of largest circle
area = 0.;
for (dal::bv_visitor i(m.convex_index()); !i.finished(); ++i) {
getfem::papprox_integration pai
= mim.int_method_of_element(i)->approx_method();
bgeot::vectors_to_base_matrix(G, m.points_of_convex(i));
bgeot::geotrans_interpolation_context c(m.trans_of_convex(i),
pai->point(0), G);
for (size_type j = 0; j < pai->nb_points_on_convex(); ++j) {
c.set_xref(pai->point(j));
if (gmm::vect_norm2(c.xreal()) <= R1) area += pai->coeff(j) * c.J();
}
}
cout << "Area of largest circle : " << area
<< " compared to exact value : " << M_PI*R1*R1 << endl;
if (gmm::abs(area - M_PI*R1*R1) > 1E-3)
GMM_ASSERT1(false, "Cutting integration method has failed : " << area
<< " instead of " << M_PI*R1*R1 << ".");
}
void test_3d() {
getfem::mesh m; m.read_from_file("meshes/ball_3D_P2_84_elements.mesh");
getfem::mesh_fem mf(m);
getfem::mesh_level_set mls(m);
getfem::mesh_im_level_set mim(mls, getfem::mesh_im_level_set::INTEGRATE_ALL,
getfem::int_method_descriptor("IM_TETRAHEDRON(6)"));
getfem::level_set ls1(m, 2), ls2(m, 2), ls3(m, 2);
const getfem::mesh_fem &ls1mf = ls1.get_mesh_fem();
scalar_type R1=.4;
for (unsigned i=0; i < ls1mf.nb_dof(); ++i) {
ls1.values()[i] = gmm::vect_dist2_sqr(ls1mf.point_of_basic_dof(i),
getfem::base_node(0,0,0)) -R1*R1;
}
const getfem::mesh_fem &ls2mf = ls2.get_mesh_fem();
scalar_type R2=.1;
for (unsigned i=0; i < ls2mf.nb_dof(); ++i) {
ls2.values()[i] = gmm::vect_dist2_sqr(ls2mf.point_of_basic_dof(i),
getfem::base_node(0,0.3,0)) -R2*R2;
}
const getfem::mesh_fem &ls3mf = ls3.get_mesh_fem();
scalar_type R3=.08;
for (unsigned i=0; i < ls3mf.nb_dof(); ++i) {
ls3.values()[i] = -gmm::vect_dist2_sqr(ls3mf.point_of_basic_dof(i),
getfem::base_node(0,0.48,0)) +R3*R3;
}
mim.set_integration_method(m.convex_index(),
getfem::int_method_descriptor("IM_TETRAHEDRON(6)"));
scalar_type area(0);
base_matrix G;
for (dal::bv_visitor i(m.convex_index()); !i.finished(); ++i) {
getfem::papprox_integration pai
= mim.int_method_of_element(i)->approx_method();
bgeot::vectors_to_base_matrix(G, m.points_of_convex(i));
bgeot::geotrans_interpolation_context c(m.trans_of_convex(i),
pai->point(0), G);
for (size_type j = 0; j < pai->nb_points_on_convex(); ++j) {
c.set_xref(pai->point(j));
if (gmm::vect_norm2(c.xreal()) <= R1) area += pai->coeff(j) * c.J();
}
}
cout << "Area of largest circle : " << area
<< " compared to exact value : " << 4/3.*M_PI*R1*R1*R1 << endl;
mls.add_level_set(ls1);
//mim.add_level_set(ls2);
//mim.add_level_set(ls3);
// mim.adapt();
// Test computing the area of largest circle
area = 0.;
for (dal::bv_visitor i(m.convex_index()); !i.finished(); ++i) {
getfem::papprox_integration pai
= mim.int_method_of_element(i)->approx_method();
bgeot::vectors_to_base_matrix(G, m.points_of_convex(i));
bgeot::geotrans_interpolation_context c(m.trans_of_convex(i),
pai->point(0), G);
for (size_type j = 0; j < pai->nb_points_on_convex(); ++j) {
c.set_xref(pai->point(j));
if (gmm::vect_norm2(c.xreal()) <= R1) area += pai->coeff(j) * c.J();
}
}
cout << "Area of largest circle : " << area
<< " compared to exact value : " << 4/3.*M_PI*R1*R1*R1 << endl;
if (gmm::abs(area - 4/3.*M_PI*R1*R1*R1) > 1E-3)
GMM_ASSERT1(false, "Cutting integration method has failed");
}
int main(/* int argc, char **argv */) {
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
try {
// getfem::getfem_mesh_level_set_noisy();
test_2d();
}
GMM_STANDARD_CATCH_ERROR;
return 0;
}
|