1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
/*===========================================================================
Copyright (C) 2007-2020 Yves Renard, Julien Pommier.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#ifndef DEBUG_SMALL_VECTOR
# define DEBUG_SMALL_VECTOR
#endif
#ifdef GETFEM_HAVE_SYS_TIMES
# include <sys/times.h>
#endif
#include <valarray>
#include <unistd.h>
#include <random>
#include "getfem/bgeot_small_vector.h"
#include "getfem/getfem_mesh.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
bool quick = false;
#ifdef GETFEM_HAVE_SYS_TIMES
struct chrono {
struct ::tms t;
::clock_t t_elapsed;
float cpu_, elapsed_, system_;
float nbclocktk;
public:
chrono() { nbclocktk = ::sysconf(_SC_CLK_TCK); init(); }
chrono& init() { elapsed_=0; cpu_=0; system_ =0; return *this; }
void tic() { t_elapsed = ::times(&t); }
chrono& toc() {
struct tms t2; ::clock_t t2_elapsed = ::times(&t2);
elapsed_ += (t2_elapsed - t_elapsed) / nbclocktk;
cpu_ += (t2.tms_utime - t.tms_utime) / nbclocktk;
system_ += (t2.tms_stime - t.tms_stime) / nbclocktk;
memcpy(&t, &t2, sizeof(struct tms));
return *this;
}
float cpu() const { return cpu_; }
float elapsed() const { return elapsed_; }
float system() const { return system_; }
};
#else
struct chrono {
float t,cpu_;
public:
chrono() { }
chrono& init() { cpu_=0; return *this; }
void tic() { t = float(gmm::uclock_sec()); }
chrono& toc() {
float t2 = float(gmm::uclock_sec());
cpu_ += t2 - t; t = t2; return *this;
}
float cpu() const { return cpu_; }
float elapsed() const { return cpu_; }
float system() const { return 0.; }
};
#endif
#define REFCNT
namespace test {
using bgeot::dim_type;
using bgeot::size_type;
class block_allocator {
public:
typedef gmm::uint16_type uint16_type;
/* number of objects stored in a same block, power of 2 */
enum { p2_BLOCKSZ = 8, BLOCKSZ = 1<<p2_BLOCKSZ };
struct node_id {
gmm::uint32_type p;
bool aliased() const { return (p != (p*2)/2); }// & 0x80000000; }
void set_aliased() { p += 0x80000000; }
void unset_aliased() { p = (p*2)/2; }//&= ~0x80000000; }
gmm::uint32_type id() const { return (p*2)/2; } // & 0x7fffffff; }
gmm::uint32_type bid() const { return id()/BLOCKSZ; }
gmm::uint32_type chunkid() const { return id()%BLOCKSZ; }
explicit node_id(gmm::uint32_type p_) : p(p_) {}
node_id(gmm::uint32_type b, gmm::uint32_type cid, bool al_) : p((b*BLOCKSZ+cid)+(al_?0x80000000:0)) {}
bool null() const { return p == 0; }
void nullify() { p = 0; }
bool operator ==(const node_id &a) { return p == a.p; }
};
typedef gmm::uint32_type size_type;
enum { OBJ_SIZE_LIMIT = 129 }; /* object size limit */
enum { MAXREF = 256 }; /* reference count limit before copying is used */
protected:
/* definition of a block (container of BLOCKSZ chunks) */
struct block {
/* effective data + reference count (stored in the BLOCKSZ first bytes) */
unsigned char * data;
/* keep track of unused chunks */
uint16_type first_unused_chunk, count_unused_chunk;
/* "pointers" for the list of free (or partially filled) blocks */
size_type prev_unfilled, next_unfilled;
size_type objsz; /* size (in bytes) of the chunks stored in this block */
block() : data(0) {}
block(size_type objsz_) : data(0),
prev_unfilled(size_type(-1)),
next_unfilled(size_type(-1)),
objsz(objsz_) {}
~block() {} /* no cleanup of data, no copy constructor : it's on purpose
since the block will be moved a lot when the vector container
will be resized (cleanup done by ~block_allocator) */
void init() {
clear();
data = static_cast<unsigned char*>(::operator new(BLOCKSZ*objsz + BLOCKSZ));
/* first BLOCKSZ bytes are used for reference counting */
memset(data, 0, BLOCKSZ);
//cout << "init block&" << this << " allocated data: " << (void*)data << "\n";
}
void clear() {
//cout << "clear block&" << this << " frees data: " << (void*)data << "\n";
if (data) { ::operator delete(data); };
data = 0; first_unused_chunk = 0; count_unused_chunk = BLOCKSZ;
}
unsigned char& refcnt(size_type pos) { return data[pos]; }
bool empty() const { return data == 0; }
/* could be smarter .. */
};
/* container of all blocks .. a vector ensures fast access to
any element (better than deque) */
std::vector<block> blocks;
/* pointers to free (or partially free) blocks for each object size */
size_type first_unfilled[OBJ_SIZE_LIMIT];
public:
block_allocator();
~block_allocator();
/* gets the data pointer for an object given its "id" */
void * obj_data(node_id id) {
return blocks[id.bid()].data + BLOCKSZ + (id.chunkid())*blocks[id.bid()].objsz;
}
dim_type obj_sz(node_id id) {
return dim_type(blocks[id.bid()].objsz);
}
/* reference counting */
unsigned char& refcnt(node_id id) {
return blocks[id.bid()].refcnt(id.chunkid());
}
node_id inc_ref(node_id& id) {
if (!id.null()) {
if (refcnt(id)++==1) id.set_aliased();
else if (refcnt(id) == 0) {
--refcnt(id);
return duplicate(id);
}
}
return id;
}
void dec_ref(node_id& id) {
SVEC_ASSERT(id.null() || refcnt(id));
if (!id.null()) {
--refcnt(id);
if (refcnt(id) == 0) {
++refcnt(id);
deallocate(id);
} else if (refcnt(id) == 1) {
SVEC_ASSERT(id.aliased());
id.unset_aliased();
}
}
}
void duplicate_if_aliased(node_id& id) {
if (id.aliased()) {
SVEC_ASSERT(refcnt(id)>=1);
if (refcnt(id)>1) {
--refcnt(id);
id = duplicate(id); SVEC_ASSERT(id.null() || (refcnt(id)==1 && !id.aliased()));
} else id.unset_aliased();
}
}
/* allocation of a chunk */
node_id allocate(size_type n);
/* deallocation of a chunk */
void deallocate(node_id nid);
void memstats();
protected:
/* won't work for non-POD types ... */
node_id duplicate(node_id id) {
node_id id2 = allocate(obj_sz(id));
memcpy(obj_data(id2),obj_data(id),obj_sz(id));
return id2;
}
void insert_block_into_unfilled(size_type bid);
void remove_block_from_unfilled(size_type bid);
};
/* common class for all mini_vec, provides access to the common static allocator */
struct static_block_allocator {
static block_allocator alloc;
};
/**
small_vector class: container for small vectors of POD types. Should be as fast as
std::vector<T> while beeing smaller and uses copy-on-write. The gain is especially
valuable on 64 architectures.
*/
template<typename T> class small_vector : public static_block_allocator {
typedef block_allocator::node_id node_id;
mutable node_id id;
public:
typedef small_vector<T> this_type;
typedef this_type vector_type;
typedef T value_type;
typedef T * pointer;
typedef const T * const_pointer;
typedef T& reference;
typedef const T & const_reference;
typedef T *iterator;
typedef const T * const_iterator;
void out_of_range_error(void) const { GMM_ASSERT1(false, "out of range"); }
reference operator[](size_type l) { if (l >= size()) out_of_range_error(); return base()[l]; }
value_type operator[](size_type l) const { if (l >= size()) out_of_range_error(); return const_base()[l]; }
value_type at(size_type l) const { return const_base()[l]; }
iterator begin() { return base(); }
const_iterator begin() const { return const_base(); }
const_iterator const_begin() const { return const_base(); }
iterator end() { return base()+size(); }
const_iterator end() const { return const_base()+size(); }
const_iterator const_end() const { return const_base()+size(); }
void resize(size_type n) {
if (n == size()) return;
if (n) {
small_vector<T> other(n); SVEC_ASSERT(other.refcnt() == 1);
memcpy(other.base(), const_base(), std::min(size(),other.size())*sizeof(value_type));
SVEC_ASSERT(id.null() || refcnt());
swap(other);
SVEC_ASSERT(refcnt()); SVEC_ASSERT(other.id.null() || other.refcnt());
} else { allocator().dec_ref(id); id.nullify(); }
}
const small_vector<T>& operator=(const small_vector<T>& other) {
/* order very important when &other == this */
node_id id2 = allocator().inc_ref(other.id);
allocator().dec_ref(id); id = id2;
SVEC_ASSERT(id.null() || refcnt()); SVEC_ASSERT(other.id.null() || other.refcnt());
return *this;
}
void swap(small_vector<T> &v) { std::swap(id,v.id); }
small_vector() : id(0) {}
small_vector(size_type n) : id(allocate(n)) {}
small_vector(const small_vector<T>& v) : id(allocator().inc_ref(v.id)) {}
~small_vector() { allocator().dec_ref(id); }
small_vector(T v1, T v2) : id(allocate(2))
{ begin()[0] = v1; begin()[1] = v2; }
small_vector(T v1, T v2, T v3) : id(allocate(3))
{ begin()[0] = v1; begin()[1] = v2; begin()[2] = v3; }
template<class UNOP> small_vector(const small_vector<T>& a, UNOP op)
: id(allocate(a.size())) { std::transform(a.begin(), a.end(), begin(), op); }
template<class BINOP> small_vector(const small_vector<T>& a, const small_vector<T>& b, BINOP op)
: id(allocate(a.size())) { std::transform(a.begin(), a.end(), b.begin(), begin(), op); }
bool empty() const { return this->id == node_id(0); }
unsigned char refcnt() const { return allocator().refcnt(id); }
dim_type size() const { return allocator().obj_sz(id)/sizeof(value_type); }
small_vector<T> operator+(const small_vector<T>& other) const
{ return small_vector<T>(*this,other,std::plus<T>()); }
small_vector<T> operator-(const small_vector<T>& other) const
{ return small_vector<T>(*this,other,std::minus<T>()); }
small_vector<T> operator*(T v) const
{ return small_vector<T>(*this, std::bind2nd(std::multiplies<T>(),v)); }
small_vector<T> operator/(T v) const { return (*this)*(T(1)/v); }
small_vector<T>& operator+=(const small_vector<T>& other) {
const_iterator b = other.begin(); iterator it = begin();
for (size_type i=0; i < size(); ++i) *it++ += *b++;
return *this;
}
small_vector<T>& addmul(T v, const small_vector<T>& other) IS_DEPRECATED;
//{ std::transform(begin(), end(), other.begin(), begin(), std::plus<T>()); return *this; }
small_vector<T>& operator-=(const small_vector<T>& other) {
const_iterator b = other.begin(); iterator it = begin();
for (size_type i=0; i < size(); ++i) *it++ -= *b++;
return *this;
}
small_vector<T> operator*=(T v) { iterator it = begin(), ite=end(); while(it < ite) *it++ *= v; return *this; }
small_vector<T> operator/=(T v) { return operator*=(T(1)/v); }
bool operator<(const small_vector<T>& other) const;
void fill(T v) { for (iterator it=begin(); it != end(); ++it) *it = v; }
small_vector<T>& operator<<(T x) { push_back(x); return *this; }
small_vector<T>& clear() { resize(0); return *this; }
void push_back(T x) { resize(size()+1); begin()[size()-1] = x; }
size_type memsize() const { return (size()*sizeof(T) / refcnt()) + sizeof(*this); }
protected:
/* read-write access (ensures the refcount is 1) */
pointer base() {
allocator().duplicate_if_aliased(id);
return static_cast<pointer>(allocator().obj_data(id));
}
/* read-only access */
const_pointer const_base() const {
SVEC_ASSERT(id.null() || refcnt()); return static_cast<const_pointer>(allocator().obj_data(id));
}
block_allocator& allocator() const { return alloc; }
node_id allocate(size_type n) {
return (allocator().allocate(n*sizeof(value_type))); SVEC_ASSERT(refcnt() == 1);
}
};
template<class T> inline bool small_vector<T>::operator<(const small_vector<T>& other) const {
return std::lexicographical_compare(begin(), end(), other.begin(), other.end());
}
template<class T> inline small_vector<T>& small_vector<T>::addmul(T v, const small_vector<T>& other) {
const_iterator b = other.begin(); iterator it = begin();
for (size_type i=0; i < size(); ++i) *it++ += v * *b++;
return *this;
}
template<class T> std::ostream& operator<<(std::ostream& os, const small_vector<T>& v) {
os << "["; for (size_type i=0; i < v.size(); ++i) { if (i) os << ", "; os << v[i]; }
os << "]"; return os;
}
template<class T> inline small_vector<T> operator *(T x, const small_vector<T>& m)
{ return m*x; }
block_allocator static_block_allocator::alloc;
block_allocator::block_allocator() {
for (size_type i=0; i < OBJ_SIZE_LIMIT; ++i)
first_unfilled[i] = i ? size_type(-1) : 0;
/* bloc 0 is reserved for objects of size 0 -- it won't grow */
blocks.push_back(block(0)); blocks.front().init();
}
block_allocator::~block_allocator() {
for (size_type i=0; i < blocks.size(); ++i)
if (!blocks[i].empty()) blocks[i].clear();
}
block_allocator::node_id block_allocator::allocate(block_allocator::size_type n) {
if (n == 0) return node_id(0);
if (n >= OBJ_SIZE_LIMIT)
GMM_ASSERT1(false,
"attempt to allocate a supposedly \"small\" object of "
<< n << " bytes\n");
//cout << "dim = " << n << " ";
if (first_unfilled[n] == size_type(-1)) {
blocks.push_back(block(n)); blocks.back().init();
insert_block_into_unfilled(gmm::uint32_type(blocks.size()-1));
if (first_unfilled[n] >= (1<<(31-p2_BLOCKSZ))) {//(node_id(1)<<(sizeof(node_id)*CHAR_BIT - p2_BLOCKSZ))) {
GMM_ASSERT1(false,
"allocation slots exhausted for objects of size " <<
n << " (" << first_unfilled[n] << " allocated!),\n" <<
"either increase the limit, or check for a leak in your code.");
//cout << "created new block " << first_unfilled[n] << "\n";
}
}
block &b = blocks[first_unfilled[n]]; SVEC_ASSERT(b.objsz == n);
if (b.empty()) b.init(); /* realloc memory if needed */
size_type vid = b.first_unused_chunk; SVEC_ASSERT(vid < BLOCKSZ);
node_id id(first_unfilled[n], vid, false);
SVEC_ASSERT(b.refcnt(b.first_unused_chunk)==0);
b.refcnt(vid) = 1; b.count_unused_chunk--;
if (b.count_unused_chunk) {
do b.first_unused_chunk++; while (b.refcnt(b.first_unused_chunk));
} else {
b.first_unused_chunk = BLOCKSZ;
remove_block_from_unfilled(first_unfilled[n]);
}
//cout << "allocated " << first_unfilled[n] << ", " << vid << " @" << obj_data(id) << "\n";
SVEC_ASSERT(obj_data(id));
//SVEC_ASSERT(refcnt(id) == 0);
return id;
}
void block_allocator::deallocate(block_allocator::node_id nid) {
if (nid.null()) return;
size_type bid = nid.bid();
size_type vid = nid.chunkid();
block &b = blocks[bid];
//cout << "deallocate " << bid << "/dim=" << b.dim << ", " << vid << ", unused=" << b.unused << "\n";
SVEC_ASSERT(b.refcnt(vid) == 1);
b.refcnt(vid) = 0;
if (b.count_unused_chunk++ == 0) {
insert_block_into_unfilled(bid);
b.first_unused_chunk = gmm::uint16_type(vid);
} else {
b.first_unused_chunk = gmm::uint16_type(std::min<size_type>(b.first_unused_chunk,vid));
if (b.count_unused_chunk == BLOCKSZ) b.clear();
}
}
void block_allocator::memstats() {
cout << "block_allocator memory statistics:\ntotal number of blocks: "
<< blocks.size() << ", each blocks stores " << BLOCKSZ
<< " chuncks; size of a block header is " << sizeof(block) << " bytes\n";
for (size_type d = 0; d < OBJ_SIZE_LIMIT; ++d) {
size_type total_cnt=0, used_cnt=0, mem_total = 0, bcnt = 0;
for (size_type i=0; i < blocks.size(); ++i) {
if (blocks[i].objsz != d) continue; else bcnt++;
if (!blocks[i].empty()) {
total_cnt += BLOCKSZ;
used_cnt += BLOCKSZ - blocks[i].count_unused_chunk;
mem_total += (BLOCKSZ+1)*blocks[i].objsz;
}
mem_total = gmm::uint32_type(mem_total + sizeof(block));
}
if (mem_total)
cout << " sz " << d << ", memory used = " << mem_total << " bytes for "
<< total_cnt << " nodes, unused space = "
<< (total_cnt == 0 ? 100. : 100. - 100.* used_cnt / total_cnt)
<< "%, bcnt=" << bcnt << "\n";
}
}
void block_allocator::insert_block_into_unfilled(block_allocator::size_type bid) {
SVEC_ASSERT(bid < blocks.size());
dim_type dim = dim_type(blocks[bid].objsz);
SVEC_ASSERT(bid != first_unfilled[dim]);
SVEC_ASSERT(blocks[bid].prev_unfilled+1 == 0);
SVEC_ASSERT(blocks[bid].next_unfilled+1 == 0);
blocks[bid].prev_unfilled = size_type(-1);
blocks[bid].next_unfilled = first_unfilled[dim];
if (first_unfilled[dim] != size_type(-1)) {
SVEC_ASSERT(blocks[first_unfilled[dim]].prev_unfilled+1 == 0);
blocks[first_unfilled[dim]].prev_unfilled = bid;
}
first_unfilled[dim] = bid;
//cout << "** bloc " << bid << " has been INSERTED in unfilled list, which is now"; show_unfilled(bid);
}
void block_allocator::remove_block_from_unfilled(block_allocator::size_type bid) {
SVEC_ASSERT(bid < blocks.size());
dim_type dim = dim_type(blocks[bid].objsz);
//cout << "** bloc " << bid << " is going to be REMOVE unfilled list, which is now"; show_unfilled(bid);
size_type p = blocks[bid].prev_unfilled; blocks[bid].prev_unfilled = size_type(-1);
size_type n = blocks[bid].next_unfilled; blocks[bid].next_unfilled = size_type(-1);
if (p != size_type(-1)) { blocks[p].next_unfilled = n; }
if (n != size_type(-1)) { blocks[n].prev_unfilled = p; }
if (first_unfilled[dim] == bid) { SVEC_ASSERT(p+1==0); first_unfilled[dim] = n; }
//cout << "** bloc " << bid << " has been REMOVED in unfilled list, which is now"; show_unfilled(bid);
}
} /* namespace test */
namespace getfem {
std::allocator<double> al;
struct micro_vec {
typedef double value_type;
typedef double * pointer;
typedef double & reference;
typedef double *iterator;
typedef const double * const_iterator;
pointer p;
pointer base() const { return (double*)((size_type)p&(~7UL)); }
reference operator[](size_type i) { return base()[i]; }
const double& operator[](size_type i) const { return base()[i]; }
micro_vec() : p(0) {}
static pointer alloc(size_type n) {
if (n==0) return 0;
double *p = al.allocate(n); //new double[n];
return (double*) ((char*)p + n);
}
micro_vec(size_type n) : p(alloc(n)) {}
micro_vec(const micro_vec& v) : p(alloc(v.size())) {
memcpy(base(), v.base(), size()*sizeof(double));
}
iterator begin() { return base(); }
const_iterator begin() const { return base(); }
iterator end() { return base()+size(); }
const_iterator end() const { return base()+size(); }
void resize(size_type) { /* hum */ }
void deallocate() {
if (p) { al.deallocate(base(),size()); } //delete[] base();
}
micro_vec& operator=(const micro_vec& other) {
if (&other != this) {
if (other.size() != size()) {
deallocate();
p = alloc(other.size());
}
memcpy(base(), other.base(), size()*sizeof(double));
}
return *this;
}
~micro_vec() { deallocate(); }
size_type size() const { return (size_type)(p) & 7UL; }
micro_vec(const micro_vec& va, const micro_vec& vb) : p(alloc(va.size())) {
/*double * restrict__ pb = base(), *pe = base()+size(), *pva = va.base(), *pvb = vb.base();
for (; pb < pe;) *pb++=*pva+++*pvb++;*/
for (size_type i=0; i < va.size(); ++i) (*this)[i] = va[i]+vb[i];
}
micro_vec operator+(const micro_vec& v) const {
return micro_vec(*this, v);
}
micro_vec& operator+=(const micro_vec& v) {
for (unsigned i=0; i < size(); ++i) {
(*this)[i] += v[i];
}
return *this;
}
micro_vec& operator-=(const micro_vec& v) {
for (unsigned i=0; i < v.size(); ++i) {
(*this)[i] -= v[i];
}
return *this;
}
};
template<class V> void init(std::vector<V>& vv) {
for (size_type i=0; i < vv.size(); ++i) {
size_type sz = (rand()%5) +1;
vv[i] = V(sz);
}
for (size_type i=0; i < vv.size(); ++i) {
vv[i].resize(2);
vv[i] = V(2);
vv[i][0] = double(i); vv[i][1] = double(i)/double(23); //vv[i][2] = i;
}
}
template <class V> void rrun(std::vector<V>& vv) {
chrono c;
c.init().tic();
cout << GMM_PRETTY_FUNCTION << "\n";
size_type N = quick ? 10 : 25;
for (size_type k=0; k < N; ++k) {
init(vv);
}
cout << " creation : " << c.toc().cpu() << " sec\n, size="
<< vv.capacity()*((char*)&vv[1] - (char*)&vv[0]) << " + "
<< vv.size() * vv[0].size()*((char*)&vv[1][0] - (char*)&vv[0][0])
<< " bytes\n";
c.init().tic();
for (size_type i=0; i < N*5; ++i) {
for (size_type j=0; j < vv.size(); ++j) {
for (size_type k=0; k < vv[j].size(); ++k) {
vv[j][k] = double(j+k);
assert(vv[j][k] == double(j+k));
}
vv[j] = vv[j];
for (size_type k=0; k < vv[j].size(); ++k)
assert(vv[j][k] == double(j+k));
}
}
cout << "remplissage : " << c.toc().cpu() << " sec\n";
c.init().tic();
for (size_type i=0; i < N*5; ++i) {
for (size_type j=0; j < vv.size(); ++j) {
for (size_type k=0; k < vv[j].size(); ++k) {
if (gmm::abs(vv[j][k] - double(j+k))>1e-14)
{ cout << "vv[j][k]=" << vv[j][k] << "!=" <<j+k<< "\n"; abort(); }
}
}
}
cout << "lecture : " << c.toc().cpu() << " sec\n";
c.init().tic();
for (size_type i=0; i < N; ++i) {
std::vector<V> w, z;
w = vv;
std::shuffle(vv.begin(), vv.end(), std::mt19937());
z = w;
}
cout << " copies : " << c.toc().cpu() << " sec\n";
c.init().tic();
for (size_type i=0; i < N; ++i) {
init(vv);
for (size_type j=1; j < vv.size()-1; ++j) {
vv[j] = vv[j-1] + vv[j] + vv[j] + vv[j+1];
}
}
cout << " operator + : " << c.toc().cpu() << " sec\n";
c.init().tic();
for (size_type i=0; i < N; ++i) {
init(vv);
for (size_type j=vv.size()-1; j > 0; --j) {
vv[j] -= vv[j-1];
}
}
cout << " operator -=: " << c.toc().cpu() << " sec\n";
// for (size_type i=0; i < (vv.size()<4 ? vv.size() : 4); ++i) {
// printf("V[%d]@%p, V[%d][0]@%p\n", int(i), &vv[i], int(i), &vv[i][0]);
// }
gmm::lexicographical_less<V, gmm::approx_less<typename V::value_type> > comp;
c.init().tic();
init(vv);
std::shuffle(vv.begin(), vv.end(), std::mt19937());
for (size_type i=0; i < N*4; ++i) {
size_type cnt = 0;
for (size_type j=vv.size()-1; j > 0; --j) {
cnt += comp(vv[j],vv[j-1]) ? 1:-1;
}
}
cout << " comparaison: " << c.toc().cpu() << " sec\n";
getfem::mesh m;
cout << "mesh<base_node> : empty size = " << m.memsize() << "\n";
init(vv);
c.init().tic();
std::shuffle(vv.begin(), vv.end(), std::mt19937());
for (size_type i=0; i < N; ++i) {
m.clear();
for (size_type j=0; j < vv.size(); ++j) {
m.add_point(vv[j]);
}
}
cout << "mesh<base_node> : size for " << m.nb_points()
<< " points: " << m.memsize() << " bytes, cpu="
<< c.toc().cpu() << " sec\n";
}
template<class MICRO_VEC> void hop() {
/*std::vector<MICRO_VEC::node_id> w(300);
for (size_type j=0; j < w.size(); ++j) {
w[j] = MICRO_VEC::alloc.allocate(3);
}
std::shuffle(w.begin(), w.end(), std::mt19937());
for (size_type j=0; j < w.size(); ++j) {
MICRO_VEC::alloc.deallocate(w[j]);
}
MICRO_VEC::alloc.memstats();*/
}
template<class V>void refccheck() {
{
std::vector<V> v;
v.clear();
v.resize(259, V(3));
/*for (size_type i=0; i < v.size(); ++i) {
cout << "v[" << i << "]=" << *(unsigned*)(&v[i]) << ", refcnt=" << (int)v[i].refcnt() << "\n";
}*/
}
{
std::vector<V> v(342,V(2)); v[0][0] = 3; v[0][1] = 6;
for (size_type i=1; i < v.size(); ++i) {
v[i] = v[0];
/* cout << "v[" << 0 << "]=" << *(unsigned*)(&v[0]) << ", refcnt=" << (int)v[0].refcnt() << ", ";
cout << "v[" << i << "]=" << *(unsigned*)(&v[i]) << ", refcnt=" << (int)v[i].refcnt()
<< "val={" << v[i].const_begin()[0] << "," << v[i].const_begin()[1] << "}\n";
*/
}
for (size_type i=1; i < v.size(); ++i) {
for (size_type j=0; j < std::max(v[0].size(),v[i].size()); ++j) {
typename V::value_type a = v[0][j];
typename V::value_type b = v[i][j];
assert(a == b);
}
scalar_type d = gmm::vect_dist2_sqr(v[i],v[0]);
assert(d ==0.);
}
for (size_type i=1; i < v.size(); ++i) v[i] = v[i-1];
}
{
std::vector<V> w(342);
std::vector<V> v(w);
for (size_type i=1; i < w.size(); ++i) v[i] = w[i];
for (size_type i=1; i < w.size(); ++i) assert(gmm::vect_dist2_sqr(v[i],w[i])==0.);
for (size_type i=1; i < w.size(); ++i) v[i] = w[0]+w[1];
for (size_type i=1; i < w.size(); ++i) v[i] = w[0];
for (size_type i=0; i < 8; ++i) {
v[0].resize(i);
v[i] = v[0];
}
v[0].clear();
for (size_type i=0; i < 8; ++i) {
v[0].push_back(i);
}
}
}
#ifdef REFCNT
# define IFREFCNT(x) (x)
#else
# define IFREFCNT(x) 1
#endif
template<class MICRO_VEC> void hop2() {
MICRO_VEC v(1); v[0] = 100;
assert(v.refcnt() == 1);
MICRO_VEC w(v);
assert(v.refcnt() == IFREFCNT(2));
assert(w.refcnt() == IFREFCNT(2));
w = v;
assert(v.refcnt() == IFREFCNT(2));
assert(w.refcnt() == IFREFCNT(2));
MICRO_VEC z(3);
w = z;
assert(v.refcnt() == 1);
assert(w.refcnt() == IFREFCNT(2));
assert(z.refcnt() == IFREFCNT(2));
z[0] = 1;
assert(v.refcnt() == 1);
assert(w.refcnt() == 1);
assert(z.refcnt() == 1);
MICRO_VEC *pz;
for (size_type i=0; i < 67; ++i) {
pz = new MICRO_VEC(z);
//cout << "i=" << i << ", pz=" << (void*)pz->const_begin() << ", pz->cnt=" << (int)pz->refcnt() << ", z->cnt=" << (int)z.refcnt() << "\n";
assert(pz->refcnt() == IFREFCNT((i < test::block_allocator::MAXREF-2) ? i+2 : 1));
assert(z.refcnt() == IFREFCNT(std::min<unsigned>((i+2),test::block_allocator::MAXREF-1)));
}
std::vector<MICRO_VEC*> pp;
for (size_type i=0; i < 67; ++i) {
pp.push_back(new MICRO_VEC(z));
for (size_type j=0; j <= i; ++j) {
pz = pp[j]; assert(pz->size() == 3);
//cout << (int)pz->refcnt() << "\n";
(*pz)[0] = 3*(i-j)+1;(*pz)[1] = 3*(i-j)+2;(*pz)[2] = 3*(i-j)+3;
//cout << (int)pz->refcnt() << "\n";
assert(pz->refcnt() == 1);
}
assert(pz->refcnt() == 1);
//cout << "i=" << i << ", pp[i]=" << (void*)pz->const_begin() << ", pp[i]->cnt=" << (int)pz->refcnt() << "\n";
}
w = MICRO_VEC(2); w[0] = 2; w[1] = 4; //typename MICRO_VEC::set(), 2, 4);
w *= 2; w /= 2; w += w; w -= w; w = w+w; w = w-w; w = (w*3) - w/2;
refccheck<MICRO_VEC>();
}
/*void runhop() {
cout << "coucou\n";
for (size_type i=0; i < 5; ++i) {
hop2<bgeot::small_vector<double> >();
//hop2<bgeot::small_vector<unsigned> >();
hop2<bgeot::small_vector<float> >();
hop2<bgeot::small_vector<short> >();
hop2<bgeot::small_vector<char> >();
hop<bgeot::small_vector<double> >();
}
bgeot::static_block_allocator().memstats();
for (size_type i=0; i < 5; ++i) {
hop2<test::small_vector<double> >();
//hop2<test::small_vector<unsigned> >();
hop2<test::small_vector<float> >();
hop2<test::small_vector<short> >();
hop2<test::small_vector<char> >();
hop<test::small_vector<double> >();
}
test::static_block_allocator().memstats();
}
*/
void run() {
//runhop();
size_type N=quick ? 2311 : 20000;
//std::vector<base_vector> bv(N);
std::vector<base_node> vv(N);
//std::vector<micro_vec> sv(N);
std::vector<std::valarray<double> > av(N);
//std::vector<test::small_vector<double> > mv(N);
std::vector<bgeot::small_vector<double> > Sv(N);
//cerr << av[0].size() << "\n";
//base_node n(3); cerr << n[3] << "\n";
//rrun(bv);
rrun(vv);
//rrun(sv);
//rrun(mv);
rrun(Sv);
//rrun(av);
bgeot::static_block_allocator().memstats();
cout << "sizeof(size_type)=" << sizeof(size_type)
<< ", sizeof(base_node)=" << sizeof(base_node)
<< ", sizeof(base_small_vector)=" << sizeof(base_small_vector) << "\n";
}
}
int main(int argc, char **argv) {
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
if (argc == 2 && strcmp(argv[1],"-quick")==0) quick = true;
getfem::run();
}
|