1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/*===========================================================================
Copyright (C) 2009-2020 Yves Renard.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
// Uses deprecated time_dispatcher. Do not take as a model.
/**@file wave_equation.cc
@brief Transient wave equation.
The transient wave equation is solved on a regular mesh of the unit
square, and is compared to an analytical solution.
This program is used to check that getfem++ is working. This is
also a good example of use of GetFEM. This program does not use the
model bricks intentionally in order to serve as an example of solving
a pde directly with the assembly procedures.
*/
#include "getfem/getfem_model_solvers.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "gmm/gmm.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes (derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
/* definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++
*/
typedef gmm::rsvector<scalar_type> sparse_vector_type;
typedef gmm::row_matrix<sparse_vector_type> sparse_matrix_type;
typedef gmm::col_matrix<sparse_vector_type> col_sparse_matrix_type;
typedef std::vector<scalar_type> plain_vector;
/* Definitions for the exact solution of the Wave_Equation problem,
* i.e. Delta(sol_u) + sol_f = 0
*/
base_small_vector sol_K; /* a coefficient */
scalar_type sol_c, sol_t;
/* exact solution */
scalar_type sol_u(const base_node &x) {
scalar_type k = gmm::vect_norm2(sol_K);
scalar_type u = sin(k*M_PI*sol_c*sol_t);
for (size_type i = 0; i < x.size(); ++i)
u *= sin(sol_K[i]*M_PI*x[i]);
return u;
}
scalar_type sol_dtu(const base_node &x) {
scalar_type k = gmm::vect_norm2(sol_K);
scalar_type u = k*M_PI*sol_c*cos(k*M_PI*sol_c*sol_t);
for (size_type i = 0; i < x.size(); ++i)
u *= sin(sol_K[i]*M_PI*x[i]);
return u;
}
/* righ hand side */
scalar_type sol_f(const base_node &/* x */) {
return 0.;
}
/* gradient of the exact solution */
base_small_vector sol_grad(const base_node &x) {
scalar_type k = gmm::vect_norm2(sol_K);
base_small_vector grad(x.size());
for (size_type i = 0; i < x.size(); ++i) {
grad[i] = sin(k*M_PI*sol_c*sol_t) *
sol_K[i]*M_PI*cos(sol_K[i]*M_PI*x[i]);
for (size_type j = 0; j < x.size(); ++j)
if (j != i) grad[i] *= sin(sol_K[j]*M_PI*x[j]);
}
return grad;
}
/*
structure for the Wave_Equation problem
(not mandatory, just to gather the variables)
*/
struct wave_equation_problem {
enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1};
enum { DIRICHLET_WITH_MULTIPLIERS = 0, DIRICHLET_WITH_PENALIZATION = 1};
getfem::mesh mesh; /* the mesh */
getfem::mesh_im mim; /* the integration methods. */
getfem::mesh_fem mf_u; /* the main mesh_fem, for the Wave_Equation solution */
getfem::mesh_fem mf_rhs; /* the mesh_fem for the right hand side(f(x),..) */
scalar_type residual; /* max residual for the iterative solvers */
size_type N, dirichlet_version, scheme;
scalar_type dirichlet_coefficient; /* Penalization parameter. */
plain_vector U;
scalar_type dt, T, theta, beta, gamma;
std::string datafilename;
bgeot::md_param PARAM;
bool solve(void);
void init(void);
void compute_error();
wave_equation_problem(void) : mim(mesh), mf_u(mesh), mf_rhs(mesh) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void wave_equation_problem::init(void) {
std::string MESH_TYPE = PARAM.string_value("MESH_TYPE","Mesh type ");
std::string FEM_TYPE = PARAM.string_value("FEM_TYPE","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
cout << "MESH_TYPE=" << MESH_TYPE << "\n";
cout << "FEM_TYPE=" << FEM_TYPE << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
/* First step : build the mesh */
bgeot::pgeometric_trans pgt =
bgeot::geometric_trans_descriptor(MESH_TYPE);
N = pgt->dim();
std::vector<size_type> nsubdiv(N);
std::fill(nsubdiv.begin(),nsubdiv.end(),
PARAM.int_value("NX", "Nomber of space steps "));
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
PARAM.int_value("MESH_NOISED") != 0);
bgeot::base_matrix M(N,N);
for (size_type i=0; i < N; ++i) {
static const char *t[] = {"LX","LY","LZ"};
M(i,i) = (i<3) ? PARAM.real_value(t[i],t[i]) : 1.0;
}
if (N>1) { M(0,1) = PARAM.real_value("INCLINE") * PARAM.real_value("LY"); }
/* scale the unit mesh to [LX,LY,..] and incline it */
mesh.transformation(M);
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
scalar_type FT = PARAM.real_value("FT", "parameter for exact solution");
dt = PARAM.real_value("DT", "Time step");
T = PARAM.real_value("T", "final time");
scheme = PARAM.int_value("SCHEME", "Time integration scheme");
theta = PARAM.real_value("THETA", "Theta method parameter");
beta = PARAM.real_value("BETA", "Newmark scheme beta parameter");
gamma = PARAM.real_value("GAMMA", "Newmark scheme gamma parameter");
sol_c = PARAM.real_value("C", "Diffusion coefficient");
residual = PARAM.real_value("RESIDUAL");
dirichlet_version = PARAM.int_value("DIRICHLET_VERSION",
"Type of Dirichlet contion");
if (dirichlet_version == 1)
dirichlet_coefficient = PARAM.real_value("DIRICHLET_COEFFICIENT",
"Penalization coefficient for "
"Dirichlet condition");
if (residual == 0.) residual = 1e-10;
sol_K.resize(N);
for (size_type j = 0; j < N; j++)
sol_K[j] = ((j & 1) == 0) ? FT : -FT;
sol_t = 0.;
/* set the finite element on the mf_u */
getfem::pfem pf_u = getfem::fem_descriptor(FEM_TYPE);
getfem::pintegration_method ppi = getfem::int_method_descriptor(INTEGRATION);
mim.set_integration_method(mesh.convex_index(), ppi);
mf_u.set_finite_element(mesh.convex_index(), pf_u);
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
assert(i.is_face());
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
if (gmm::abs(un[N-1] - 1.0) < 1.0E-7) { // new Neumann face
mesh.region(NEUMANN_BOUNDARY_NUM).add(i.cv(), i.f());
// mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
} else {
mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
}
}
}
bool wave_equation_problem::solve(void) {
dal::bit_vector transient_bricks;
getfem::model model;
// Main unknown of the problem
model.add_fem_variable("u", mf_u, 2);
// Laplacian term on u.
model.add_initialized_scalar_data("c2", gmm::sqr(sol_c));
size_type iblap = getfem::add_generic_elliptic_brick(model, mim, "u", "c2");
transient_bricks.add(iblap);
// Volumic source term.
std::vector<scalar_type> F(mf_rhs.nb_dof());
getfem::interpolation_function(mf_rhs, F, sol_f);
model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(model, mim, "u", "VolumicData");
// Neumann condition.
gmm::resize(F, mf_rhs.nb_dof()*N);
getfem::interpolation_function(mf_rhs, F, sol_grad, NEUMANN_BOUNDARY_NUM);
gmm::scale(F, gmm::sqr(sol_c));
// The two version of the data make only a difference for midpoint scheme
model.add_fem_data("NeumannData", mf_rhs, bgeot::dim_type(N), 2);
gmm::copy(F, model.set_real_variable("NeumannData", 0));
gmm::copy(F, model.set_real_variable("NeumannData", 1));
transient_bricks.add(getfem::add_normal_source_term_brick
(model, mim, "u", "NeumannData", NEUMANN_BOUNDARY_NUM));
// Dirichlet condition.
gmm::resize(F, mf_rhs.nb_dof());
getfem::interpolation_function(mf_rhs, F, sol_u);
model.add_initialized_fem_data("DirichletData", mf_rhs, F);
if (dirichlet_version == DIRICHLET_WITH_MULTIPLIERS)
getfem::add_Dirichlet_condition_with_multipliers
(model, mim, "u", mf_u,
DIRICHLET_BOUNDARY_NUM, "DirichletData");
else
getfem::add_Dirichlet_condition_with_penalization
(model, mim, "u", dirichlet_coefficient,
DIRICHLET_BOUNDARY_NUM, "DirichletData");
// transient part.
model.add_fem_data("v", mf_u, 1, 2);
model.add_initialized_scalar_data("dt", dt);
size_type ibddt;
scalar_type alpha;
switch (scheme) {
case 1 : // Theta-method
model.add_initialized_scalar_data("theta", theta);
ibddt = getfem::add_basic_d2_on_dt2_brick(model, mim, "u", "v",
"dt", "theta");
getfem::add_theta_method_dispatcher(model, transient_bricks, "theta");
alpha = theta;
break;
case 2 : // Midpoint (not really different than Crank-Nicholson here).
model.add_initialized_scalar_data("alpha", 0.5);
alpha = 0.5;
ibddt = getfem::add_basic_d2_on_dt2_brick(model, mim, "u", "v",
"dt", "alpha");
getfem::add_midpoint_dispatcher(model, transient_bricks);
break;
case 3 : // Newmark
alpha = 2.*beta;
model.add_initialized_scalar_data("twobeta", alpha);
model.add_initialized_scalar_data("gamma", gamma);
ibddt = getfem::add_basic_d2_on_dt2_brick(model, mim, "u", "v",
"dt", "twobeta");
getfem::add_theta_method_dispatcher(model, transient_bricks, "twobeta");
break;
default : GMM_ASSERT1(false, "Unvalid time integration scheme");
}
gmm::iteration iter(residual, 0, 40000);
model.first_iter();
// Initial conditions.
gmm::resize(U, mf_u.nb_dof());
gmm::clear(U);
gmm::copy(U, model.set_real_variable("u", 1));
getfem::interpolation_function(mf_rhs, U, sol_dtu);
gmm::copy(U, model.set_real_variable("v", 1));
for (scalar_type t = 0; t < T; t += dt) {
sol_t = t+dt;
gmm::resize(F, mf_rhs.nb_dof()*N);
getfem::interpolation_function(mf_rhs, F, sol_grad, NEUMANN_BOUNDARY_NUM);
gmm::scale(F, gmm::sqr(sol_c));
gmm::copy(F, model.set_real_variable("NeumannData"));
cout << "solving for t = " << sol_t << endl;
iter.init();
getfem::standard_solve(model, iter);
switch (scheme) {
case 1 : // Theta-method
getfem::velocity_update_for_order_two_theta_method
(model, "u", "v", "dt", "theta");
break;
case 2 : // Midpoint
getfem::velocity_update_for_order_two_theta_method
(model, "u", "v", "dt", "alpha");
break;
case 3 : // Newmark
getfem::velocity_update_for_Newmark_scheme
(model, ibddt, "u", "v", "dt", "twobeta", "gamma");
break;
}
gmm::copy(model.real_variable("u"), U);
if (PARAM.int_value("EXPORT_SOLUTION") != 0) {
char s[100]; snprintf(s, 99, "step%d", int(t/dt)+1);
gmm::vecsave(datafilename + s + ".U", U);
}
{ // Computation of total energy : V^TMV/2 + U^TKU/2
// plain_vector V(mf_u.nb_dof()), W(mf_u.nb_dof());
plain_vector V(mf_u.nb_dof());
gmm::copy(model.real_variable("v"), V);
gmm::sub_interval Iu = model.interval_of_variable("u");
scalar_type J
= gmm::vect_sp(gmm::sub_matrix(model.linear_real_matrix_term(iblap, 0),
Iu, Iu), U, U) * 0.5
+ gmm::vect_sp(model.linear_real_matrix_term(ibddt, 0), V, V)
* 0.5 * dt*dt*alpha;
cout << "Energy : " << J << endl;
}
model.next_iter();
}
return (iter.converged());
}
/* compute the error with respect to the exact solution */
void wave_equation_problem::compute_error() {
plain_vector V(mf_rhs.nb_basic_dof());
getfem::interpolation(mf_u, mf_rhs, U, V);
for (size_type i = 0; i < mf_rhs.nb_basic_dof(); ++i)
V[i] -= sol_u(mf_rhs.point_of_basic_dof(i));
cout.precision(16);
cout << "L2 error = " << getfem::asm_L2_norm(mim, mf_rhs, V) << endl
<< "H1 error = " << getfem::asm_H1_norm(mim, mf_rhs, V) << endl
<< "Linfty error = " << gmm::vect_norminf(V) << endl;
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv);
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
wave_equation_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
if (!p.solve()) GMM_ASSERT1(false, "Solve procedure has failed");
if (p.PARAM.int_value("EXPORT_SOLUTION") != 0)
p.mf_u.write_to_file(p.datafilename + ".mf", true);
p.compute_error();
GETFEM_MPI_FINALIZE;
return 0;
}
|