1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*===========================================================================
Copyright (C) 2002-2020 Yves Renard.
This file is a part of GetFEM
GetFEM is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/***************************************************************************/
/* */
/* Test the interpolated fem method. */
/* */
/***************************************************************************/
#include "getfem/getfem_assembling.h"
#include "getfem/getfem_export.h"
#include "getfem/getfem_regular_meshes.h"
#include "gmm/gmm.h"
#include "getfem/getfem_interpolated_fem.h"
#include "getfem/getfem_mesh_fem_sum.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
using bgeot::base_vector;
using bgeot::base_small_vector;
using bgeot::base_node;
using bgeot::scalar_type;
using bgeot::size_type;
using bgeot::dim_type;
typedef gmm::wsvector<scalar_type> sparse_vector_type;
typedef gmm::col_matrix<sparse_vector_type> sparse_matrix_type;
typedef std::vector<scalar_type> linalg_vector;
/**************************************************************************/
/* structure representing the problem. */
/**************************************************************************/
struct lap_pb {
getfem::mesh mesh1, mesh2;
getfem::mesh_im mim1, mim2;
getfem::mesh_fem mef1, mef2, mefinterpolated;
scalar_type LX, LY, LZ;
int NX1, NX2, N, K, KI, integration;
bgeot::md_param PARAM;
void assemble(void);
void init(void);
lap_pb(void) : mim1(mesh1), mim2(mesh2), mef1(mesh1), mef2(mesh2),
mefinterpolated(mesh1) {}
};
void lap_pb::init(void) {
dal::bit_vector nn;
/***********************************************************************/
/* READING PARAMETER FILE */
/***********************************************************************/
N = int(PARAM.int_value("N", "Domaine dimension"));
LX = PARAM.real_value("LX", "Size in X");
LY = PARAM.real_value("LY", "Size in Y");
LZ = PARAM.real_value("LZ", "Size in Y");
NX1 = int(PARAM.int_value("NX1", "Nomber of sace steps "));
NX2 = int(PARAM.int_value("NX2", "Nomber of sace steps "));
integration = int(PARAM.int_value("INTEGRATION", "integration method"));
K = int(PARAM.int_value("K", "Finite element degree"));
KI = int(PARAM.int_value("KI", "Integration degree"));
/***********************************************************************/
/* BUILD MESH. */
/***********************************************************************/
cout << "Mesh generation\n";
base_node org(N); gmm::clear(org);
std::vector<base_small_vector> vtab(N);
std::vector<size_type> ref(N);
std::fill(ref.begin(), ref.end(), NX1);
for (dim_type i = 0; i < N; i++)
{
vtab[i] = base_small_vector(N); gmm::clear(vtab[i]);
(vtab[i])[i] = ((i == 0) ? LX : ((i == 1) ? LY : LZ)) / scalar_type(NX1);
}
getfem::parallelepiped_regular_simplex_mesh(mesh1, dim_type(N), org,
vtab.begin(), ref.begin());
mesh1.optimize_structure();
std::fill(ref.begin(), ref.end(), NX2);
for (dim_type i = 0; i < N; i++)
{
vtab[i] = base_small_vector(N); gmm::clear(vtab[i]);
(vtab[i])[i] = ((i == 0) ? LX : ((i == 1) ? LY : LZ)) / scalar_type(NX2);
}
getfem::parallelepiped_regular_simplex_mesh(mesh2, dim_type(N), org,
vtab.begin(), ref.begin());
mesh2.optimize_structure();
cout << "Selecting finite element method.\n";
char meth[500];
getfem::pintegration_method ppi;
switch (integration) {
case 0 : snprintf(meth, 499, "IM_EXACT_SIMPLEX(%d)", int(N)); break;
case 1 : snprintf(meth, 499, "IM_NC(%d, %d)", int(N), int(KI)); break;
case 2 : snprintf(meth, 499, "IM_GAUSS1D(%d)", int(KI)); break;
case 3 : snprintf(meth, 499, "IM_STRUCTURED_COMPOSITE(IM_NC(%d, %d), %d)",
int(N), int(2*K), int(KI)); break;
case 11 : snprintf(meth, 499, "IM_TRIANGLE(1)"); break;
case 12 : snprintf(meth, 499, "IM_TRIANGLE(2)"); break;
case 13 : snprintf(meth, 499, "IM_TRIANGLE(3)"); break;
case 14 : snprintf(meth, 499, "IM_TRIANGLE(4)"); break;
case 15 : snprintf(meth, 499, "IM_TRIANGLE(5)"); break;
case 16 : snprintf(meth, 499, "IM_TRIANGLE(6)"); break;
case 17 : snprintf(meth, 499, "IM_TRIANGLE(7)"); break;
case 21 : snprintf(meth, 499, "IM_TETRAHEDRON(1)"); break;
case 22 : snprintf(meth, 499, "IM_TETRAHEDRON(2)"); break;
case 23 : snprintf(meth, 499, "IM_TETRAHEDRON(3)"); break;
case 25 : snprintf(meth, 499, "IM_TETRAHEDRON(5)"); break;
default : GMM_ASSERT1(false, "Undefined integration method");
}
ppi = getfem::int_method_descriptor(meth);
snprintf(meth, 499, "FEM_PK(%d,%d)", int(N), int(K));
nn = mesh1.convex_index(dim_type(N));
mim1.set_integration_method(nn, ppi);
mef1.set_finite_element(nn, getfem::fem_descriptor(meth));
nn = mesh2.convex_index(dim_type(N));
mim2.set_integration_method(nn, ppi);
mef2.set_finite_element(nn, getfem::fem_descriptor(meth));
nn = mesh1.convex_index(dim_type(N));
mefinterpolated.set_finite_element
(nn, getfem::new_interpolated_fem(mef2, mim1));
}
void lap_pb::assemble(void) {
int nb_dof1 = int(mef1.nb_dof()), nb_dof2 = int(mef2.nb_dof());
sparse_matrix_type RM1(nb_dof2, nb_dof2);
double sum, diff;
cout << "Number of dof : " << nb_dof1 << " : " << nb_dof2 << endl;
cout << "Number of dof of interpolated method: "
<< mefinterpolated.nb_dof() << endl;
cout << "Assembling interpolated mass matrix" << endl;
getfem::asm_mass_matrix(RM1, mim1, mefinterpolated, mefinterpolated);
cout << "Mass Matrix\n";
sum = 0.0;
for (size_type i = 0; i < RM1.nrows(); i++) {
cout << "line " << i << " [ ";
scalar_type slig = 0;
for (size_type l = 0; l < RM1.nrows(); l++)
if (RM1(i, l) != 0.0) {
cout << "(" << l << "," << RM1(i, l) << ") ";
slig += RM1(i, l);
}
sum += slig;
cout << "] -> sum(line)=" << slig << endl;
}
cout << endl << " sum: " << sum << endl << endl;
sparse_matrix_type RM2 = sparse_matrix_type(nb_dof2, nb_dof2);
cout << "Assembling normal mass matrix" << endl;
getfem::asm_mass_matrix(RM2, mim2, mef2);
cout << "Mass Matrix\n";
sum = 0.0; diff = 0.0;
for (size_type i = 0; i < RM2.nrows(); i++) {
cout << "line " << i << " [ ";
scalar_type slig = 0;
for (size_type l = 0; l < RM2.nrows(); l++) {
diff += gmm::abs(RM2(i, l) - RM1(i, l));
if (RM2(i, l) != 0.0) {
cout << "(" << l << "," << RM2(i, l) << ") ";
slig = slig + RM2(i, l);
}
}
sum += slig;
cout << "] -> sum(line)=" << slig << endl;
}
cout << endl << " sum: " << sum << endl << endl;
cout << endl << " diff: " << diff << "max_norm="
<< gmm::mat_maxnorm(RM1) << endl << endl;
}
/* integration of a quarter of circle (approximated with a degree 5 segment) against a planar regular mesh */
void test2() {
getfem::mesh m1, m2;
std::vector<size_type> nsubdiv(2); nsubdiv[0] = nsubdiv[1] = 5;
getfem::regular_unit_mesh
(m1, nsubdiv, bgeot::geometric_trans_descriptor("GT_QK(2,2)"), false);
std::vector<base_node> v;
for (size_type k=0; k < 6; ++k) {
scalar_type c = scalar_type(k)/5. * M_PI/2;
v.push_back(base_node(cos(c), sin(c)));
}
m2.add_convex_by_points(bgeot::geometric_trans_descriptor("GT_PK(1,5)"),
v.begin());
//m2.add_segment_by_points(bgeot::base_node(.45,.35),
// bgeot::base_node(.75,.65));
//m2.add_segment_by_points(bgeot::base_node(.8,.7),bgeot::base_node(.23,.3));
getfem::mesh_fem mf1(m1), mf2(m2);
getfem::mesh_im mim(m2);
// getfem::pintegration_method pim1
// = getfem::int_method_descriptor("IM_QUAD(17)");
getfem::pintegration_method pim2
= getfem::int_method_descriptor("IM_GAUSS1D(10)");
mim.set_integration_method(m2.convex_index(), pim2);
mf1.set_finite_element(m1.convex_index(),
getfem::fem_descriptor("FEM_QK(2,1)"));
mf2.set_finite_element(m2.convex_index(),
getfem::fem_descriptor("FEM_PK(1,3)"));
getfem::mesh_fem mflnk(m2);
getfem::pfem ifem = getfem::new_interpolated_fem(mf1, mim);
mflnk.set_finite_element(m2.convex_index(), ifem);
sparse_matrix_type MM = sparse_matrix_type(mf2.nb_dof(),
mflnk.nb_dof());
getfem::asm_mass_matrix(MM, mim, mf2, mflnk);
cout << "MM=" << MM << "\n";
cout << "mflnk.nb_dof()=" << mflnk.nb_dof() << ", mf2.nb_dof()="
<< mf2.nb_dof() << ", mf1.nb_dof=" << mf1.nb_dof() << "\n";
cout << "Mass Matrix\n";
scalar_type sum = 0.0;
for (size_type i = 0; i < MM.nrows(); i++) {
scalar_type slig = 0;
for (size_type l = 0; l < MM.ncols(); l++) {
slig = slig + MM(i, l);
// cout << "M(" << i << "," << l << ")=" << MM(i,l) << ", slig = "
// << slig << "\n";
}
sum += slig;
cout << "sum(line)=" << slig << endl;
}
cout << endl << " sum: " << sum << endl << endl;
GMM_ASSERT1(gmm::abs(sum - M_PI/2.0) < 1e-5,
"Test for scalar fem failed : " << gmm::abs(sum - M_PI/2.0));
sparse_matrix_type MM2 = sparse_matrix_type(mf2.nb_dof(), mf2.nb_dof());
getfem::asm_mass_matrix(MM2, mim, mf2, mf2);
cout << "MM2=" << MM2 << "\n";
sparse_matrix_type MM3 = sparse_matrix_type(mflnk.nb_dof(), mflnk.nb_dof());
asm_stiffness_matrix_for_homogeneous_laplacian(MM3, mim, mflnk);
}
/* integration of a quarter of circle (approximated with a degree 5 segment) against a planar regular mesh : vector version */
void test3() {
getfem::mesh m1, m2;
std::vector<size_type> nsubdiv(2); nsubdiv[0] = nsubdiv[1] = 5;
getfem::regular_unit_mesh
(m1, nsubdiv, bgeot::geometric_trans_descriptor("GT_QK(2,2)"), false);
std::vector<base_node> v;
for (size_type k=0; k < 6; ++k) {
scalar_type c = scalar_type(k)/5. * M_PI/2;
v.push_back(base_node(cos(c), sin(c)));
}
m2.add_convex_by_points(bgeot::geometric_trans_descriptor("GT_PK(1,5)"),
v.begin());
//m2.add_segment_by_points(bgeot::base_node(.45,.35),
// bgeot::base_node(.75,.65));
//m2.add_segment_by_points(bgeot::base_node(.8,.7),bgeot::base_node(.23,.3));
getfem::mesh_fem mf1(m1), mf2(m2);
getfem::mesh_im mim(m2);
// getfem::pintegration_method pim1
// = getfem::int_method_descriptor("IM_QUAD(17)");
getfem::pintegration_method pim2
= getfem::int_method_descriptor("IM_GAUSS1D(10)");
mim.set_integration_method(m2.convex_index(), pim2);
mf1.set_finite_element(m1.convex_index(),
getfem::fem_descriptor("FEM_QK(2,1)"));
mf1.set_qdim(2);
mf2.set_finite_element(m2.convex_index(),
getfem::fem_descriptor("FEM_PK(1,3)"));
mf2.set_qdim(2);
getfem::mesh_fem mflnk(m2);
mflnk.set_qdim(2);
getfem::pfem ifem = getfem::new_interpolated_fem(mf1, mim);
mflnk.set_finite_element(m2.convex_index(), ifem);
sparse_matrix_type MM = sparse_matrix_type(mf2.nb_dof(), mflnk.nb_dof());
getfem::asm_mass_matrix(MM, mim, mf2, mflnk);
cout << "MM=" << MM << "\n";
cout << "mflnk.nb_dof()=" << mflnk.nb_dof() << ", mf2.nb_dof()="
<< mf2.nb_dof() << ", mf1.nb_dof=" << mf1.nb_dof() << "\n";
cout << "Mass matrix\n";
scalar_type sum = 0.0;
for (size_type i = 0; i < MM.nrows(); i++) {
scalar_type slig = 0;
for (size_type l = 0; l < MM.ncols(); l++) {
slig = slig + MM(i, l);
// cout << "M(" << i << "," << l << ")=" << MM(i,l) << ", slig = "
// << slig << "\n";
}
sum += slig;
cout << "sum(line)=" << slig << endl;
}
cout << endl << " sum: " << sum << endl << endl;
GMM_ASSERT1(gmm::abs(sum - M_PI) < 5e-5,
"Test for vectorial fem failed : " << gmm::abs(sum - M_PI));
// Il faudrait tester les gradients aussi ...
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
int main(int argc, char *argv[]) {
GETFEM_MPI_INIT(argc, argv);
test3(); // test for vectorial fems
test2(); // test for scalar fems
lap_pb p;
cout << "initialisation ...\n";
p.PARAM.read_command_line(argc, argv);
p.init();
cout << "Assembling \n";
p.assemble();
GETFEM_MPI_FINALIZE;
return 0;
}
|