1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
.. _namespace_module:
:mod:`socketio.namespace`
=========================
.. automodule:: socketio.namespace
.. autoclass:: BaseNamespace
Namespace initialization
------------------------
You can override this method:
.. automethod:: BaseNamespace.initialize
Event flow
----------
This is an attempt at catching the gotchas of the Socket.IO protocol,
which, for historical reasons, sometimes have weird event flow.
The first function to fire is ``initialize()``, which will be called
only if there is an incoming packet for the Namespace. A successful
javascript call to ``io.connect()`` **is not** sufficient for
``gevent-socketio`` to trigger the creation of a Namespace object.
Some event has to flow from the client to the server. The connection
will appear to have succeeded from the client's side, but that is
because ``gevent-socketio`` maintains the virtual socket up and running
before it hits your application. This is why it is a good pratice to
send a packet (often a ``login``, or ``subscribe`` or ``connect`` JSON
event, with ``io.emit()`` in the browser).
If you're using the GLOBAL_NS, the ``recv_connect()`` will not fire on
your namespace, because when the connection is opened, there is no
such packet sent. The ``connect`` packet is only sent over (and
explicitly sent) by the javascript client when it tries to communicate
with some "non-global" namespaces. That is why it is recommended to
always use namespaces, to avoid having a different behavior for your
different namespaces. It also makes things explicit in your
application, when you have something such as ``/chat``, or
``/live_data``. Before a certain version of Socket.IO, there was only
a global namespace, and so this behavior was kept for backwards
compatibility.
Then flows the normal events, back and forth as described elsewhere (elsewhere??).
Upon disconnection, here is what happens: [INSERT HERE the details
flow of disconnection handling, events fired, physical closing of the
connection and ways to terminate a socket, when is the Namespace
killed, the state of the spawn'd processes for each Namespace and each
virtsocket. This really needs to be done, and I'd appreciate having
people investigate this thoroughly]
There you go :)
Namespace instance properties
-----------------------------
.. attribute:: BaseNamespace.session
The :term:`session` is a simple ``dict`` that is created with
each :class:`~socketio.virtsocket.Socket` instance, and is
copied to each Namespace created under it. It is a general
purpose store for any data you want to associated with an open
:class:`~socketio.virtsocket.Socket`.
.. attribute:: BaseNamespace.request
This is the ``request`` object (or really, any object) that you
have passed as the ``request`` parameter to the
:func:`~socketio.socketio_manage` function.
.. attribute:: BaseNamespace.ns_name
The name of the namespace, like ``/chat`` or the empty string,
for the "global" namespace.
.. attribute:: BaseNamespace.environ
The ``environ`` WSGI dictionary, as it was received upon
reception of the **first** request that established the virtual
Socket. This will never contain the subsequent ``environ`` for
the next polling, so beware when using cookie-based sessions
(like Beaker).
.. attribute:: BaseNamespace.socket
A reference to the :class:`~socketio.virtsocket.Socket`
instance this namespace is attached to.
Sending data
------------
Functions to send data through the socket:
.. automethod:: BaseNamespace.emit
.. automethod:: BaseNamespace.send
.. automethod:: BaseNamespace.error
.. automethod:: BaseNamespace.disconnect
Dealing with incoming data
--------------------------
.. automethod:: BaseNamespace.recv_connect
.. automethod:: BaseNamespace.recv_message
.. automethod:: BaseNamespace.recv_json
.. automethod:: BaseNamespace.recv_error
.. automethod:: BaseNamespace.recv_disconnect
.. method:: BaseNamespace.exception_handler_decorator(fn)
This method can be a static, class or bound method (that is, with
``@staticmethod``, ``@classmethod`` or without). It receives one
single parameter, and that parameter will be the function the
framework is trying to call because some information arrived from
the remote client, for instance: ``on_*`` and ``recv_*``
functions that you declared on your namespace.
The decorator is also used to wrap called to
``self.spawn(self.job_something)``, so that if anything happens
after you've spawn'd a greenlet, it will still catch it and
handle it.
It should return a decorator with exception handling properly
dealt with. For example:
.. code-block:: python
import traceback, sys
import logging
def exception_handler_decorator(self, fn):
def wrap(*args, **kwargs):
try:
return fn(*args, **kwargs)
except Exception, e:
stack = traceback.format_exception(*sys.exc_info())
db.Evtrack.write("socketio_exception",
{"error": str(e),
"trace": stack},
self.request.email)
logging.getLogger('exc_logger').exception(e)
return wrap
.. automethod:: BaseNamespace.process_event
You would override this method only if you are not completely
satisfied with the automatic dispatching to ``on_``-prefixed
methods. You could then implement your own dispatch. See the
source code for inspiration.
Process management
------------------
Managing the different callbacks, greenlets and tasks you spawn from
this namespace:
.. automethod:: BaseNamespace.spawn
.. automethod:: BaseNamespace.kill_local_jobs
ACL system
----------
The ACL system grants access to the different ``on_*()`` and
``recv_*()`` methods of your subclass.
Developers will normally override :meth:`get_initial_acl` to
return a list of the functions they want to initially open.
Usually, it will be an ``on_connect`` event handler, that will
perform authentication and/or authorization, set some variables
on the Namespace, and then open up the rest of the Namespace
using :meth:`lift_acl_restrictions` or more granularly with
:meth:`add_acl_method` and :meth:`del_acl_method`. It is also
possible to check these things inside :meth:`initialize` when,
for example, you have authenticated a Global Namespace object,
and you want to re-use those credentials or authentication infos
in a new Namespace:
.. code-block:: python
# GLOBAL_NS = ''
class MyNamespace(BaseNamespace):
...
def initialize(self):
self.my_auth = MyAuthObjet()
if self.socket[GLOBAL_NS].my_auth.logged_in == True:
self.my_auth.logged_in = True
The content of the ACL is a list of strings corresponding to the full name
of the methods defined on your subclass, like: ``"on_my_event"`` or
``"recv_json"``.
.. automethod:: BaseNamespace.get_initial_acl
.. automethod:: BaseNamespace.add_acl_method
.. automethod:: BaseNamespace.del_acl_method
.. automethod:: BaseNamespace.lift_acl_restrictions
.. automethod:: BaseNamespace.reset_acl
This function is used internally, but can be useful to the developer:
.. automethod:: is_method_allowed
This is the attribute where the allowed methods are stored, as a list of
strings, or a single ``None``::
.. autoattribute:: allowed_methods
Low-level methods
-----------------
Packet dispatching methods. These functions are normally not overriden if
you are satisfied with the normal dispatch behavior:
.. automethod:: BaseNamespace.process_packet
.. automethod:: BaseNamespace.call_method_with_acl
.. automethod:: BaseNamespace.call_method
|