File: gf.c

package info (click to toggle)
gf-complete 1.0.2%2B2017.04.10.git.ea75cdf-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 1,272 kB
  • sloc: ansic: 16,714; sh: 573; makefile: 110
file content (1090 lines) | stat: -rw-r--r-- 39,655 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*
 * GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
 * James S. Plank, Ethan L. Miller, Kevin M. Greenan,
 * Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
 *
 * gf.c
 *
 * Generic routines for Galois fields
 */

#include "gf_int.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "gf_cpu.h"

int _gf_errno = GF_E_DEFAULT;

void gf_error()
{
  char *s;

  switch(_gf_errno) {
    case GF_E_DEFAULT: s = "No Error."; break;
    case GF_E_TWOMULT: s = "Cannot specify two -m's."; break;
    case GF_E_TWO_DIV: s = "Cannot specify two -d's."; break;
    case GF_E_POLYSPC: s = "-p needs to be followed by a number in hex (0x optional)."; break;
    case GF_E_GROUPAR: s = "Ran out of arguments in -m GROUP."; break;
    case GF_E_GROUPNU: s = "In -m GROUP g_s g_r -- g_s and g_r need to be numbers."; break;
    case GF_E_SPLITAR: s = "Ran out of arguments in -m SPLIT."; break;
    case GF_E_SPLITNU: s = "In -m SPLIT w_a w_b -- w_a and w_b need to be numbers."; break;
    case GF_E_FEWARGS: s = "Not enough arguments (Perhaps end with '-'?)"; break;
    case GF_E_CFM___W: s = "-m CARRY_FREE, w must be 4, 8, 16, 32, 64 or 128."; break;
    case GF_E_COMPXPP: s = "-m COMPOSITE, No poly specified, and we don't have a default for the given sub-field."; break;
    case GF_E_BASE__W: s = "-m COMPOSITE and the base field is not for w/2."; break;
    case GF_E_CFM4POL: s = "-m CARRY_FREE, w=4. (Prim-poly & 0xc) must equal 0."; break;
    case GF_E_CFM8POL: s = "-m CARRY_FREE, w=8. (Prim-poly & 0x80) must equal 0."; break;
    case GF_E_CF16POL: s = "-m CARRY_FREE, w=16. (Prim-poly & 0xe000) must equal 0."; break;
    case GF_E_CF32POL: s = "-m CARRY_FREE, w=32. (Prim-poly & 0xfe000000) must equal 0."; break;
    case GF_E_CF64POL: s = "-m CARRY_FREE, w=64. (Prim-poly & 0xfffe000000000000ULL) must equal 0."; break;
    case GF_E_MDEFDIV: s = "If multiplication method == default, can't change division."; break;
    case GF_E_MDEFREG: s = "If multiplication method == default, can't change region."; break;
    case GF_E_MDEFARG: s = "If multiplication method == default, can't use arg1/arg2."; break;
    case GF_E_DIVCOMP: s = "Cannot change the division technique with -m COMPOSITE."; break;
    case GF_E_DOUQUAD: s = "Cannot specify -r DOUBLE and -r QUAD."; break;
    case GF_E_SIMD_NO: s = "Cannot specify -r SIMD and -r NOSIMD."; break;
    case GF_E_CAUCHYB: s = "Cannot specify -r CAUCHY and any other -r."; break;
    case GF_E_CAUCOMP: s = "Cannot specify -m COMPOSITE and -r CAUCHY."; break;
    case GF_E_CAUGT32: s = "Cannot specify -r CAUCHY with w > 32."; break;
    case GF_E_ARG1SET: s = "Only use arg1 with SPLIT, GROUP or COMPOSITE."; break;
    case GF_E_ARG2SET: s = "Only use arg2 with SPLIT or GROUP."; break;
    case GF_E_MATRIXW: s = "Cannot specify -d MATRIX with w > 32."; break;
    case GF_E_BAD___W: s = "W must be 1-32, 64 or 128."; break;
    case GF_E_DOUBLET: s = "Can only specify -r DOUBLE with -m TABLE."; break;
    case GF_E_DOUBLEW: s = "Can only specify -r DOUBLE w = 4 or w = 8."; break;
    case GF_E_DOUBLEJ: s = "Cannot specify -r DOUBLE with -r ALTMAP|SIMD|NOSIMD."; break;
    case GF_E_DOUBLEL: s = "Can only specify -r DOUBLE -r LAZY with w = 8"; break;
    case GF_E_QUAD__T: s = "Can only specify -r QUAD with -m TABLE."; break;
    case GF_E_QUAD__W: s = "Can only specify -r QUAD w = 4."; break;
    case GF_E_QUAD__J: s = "Cannot specify -r QUAD with -r ALTMAP|SIMD|NOSIMD."; break;
    case GF_E_BADPOLY: s = "Bad primitive polynomial (high bits set)."; break;
    case GF_E_COMP_PP: s = "Bad primitive polynomial -- bigger than sub-field."; break;
    case GF_E_LAZY__X: s = "If -r LAZY, then -r must be DOUBLE or QUAD."; break;
    case GF_E_ALTSHIF: s = "Cannot specify -m SHIFT and -r ALTMAP."; break;
    case GF_E_SSESHIF: s = "Cannot specify -m SHIFT and -r SIMD|NOSIMD."; break;
    case GF_E_ALT_CFM: s = "Cannot specify -m CARRY_FREE and -r ALTMAP."; break;
    case GF_E_SSE_CFM: s = "Cannot specify -m CARRY_FREE and -r SIMD|NOSIMD."; break;
    case GF_E_PCLMULX: s = "Specified -m CARRY_FREE, but PCLMUL is not supported."; break;
    case GF_E_ALT_BY2: s = "Cannot specify -m BYTWO_x and -r ALTMAP."; break;
    case GF_E_BY2_SSE: s = "Specified -m BYTWO_x -r SIMD, but SSE2 is not supported."; break;
    case GF_E_LOGBADW: s = "With Log Tables, w must be <= 27."; break;
    case GF_E_LOG___J: s = "Cannot use Log tables with -r ALTMAP|SIMD|NOSIMD."; break;
    case GF_E_LOGPOLY: s = "Cannot use Log tables because the polynomial is not primitive."; break;
    case GF_E_ZERBADW: s = "With -m LOG_ZERO, w must be 8 or 16."; break;
    case GF_E_ZEXBADW: s = "With -m LOG_ZERO_EXT, w must be 8."; break;
    case GF_E_GR_ARGX: s = "With -m GROUP, arg1 and arg2 must be >= 0."; break;
    case GF_E_GR_W_48: s = "With -m GROUP, w cannot be 4 or 8."; break;
    case GF_E_GR_W_16: s = "With -m GROUP, w == 16, arg1 and arg2 must be 4."; break;
    case GF_E_GR_128A: s = "With -m GROUP, w == 128, arg1 must be 4, and arg2 in { 4,8,16 }."; break;
    case GF_E_GR_A_27: s = "With -m GROUP, arg1 and arg2 must be <= 27."; break;
    case GF_E_GR_AR_W: s = "With -m GROUP, arg1 and arg2 must be <= w."; break;
    case GF_E_GR____J: s = "Cannot use GROUP with -r ALTMAP|SIMD|NOSIMD."; break;
    case GF_E_TABLE_W: s = "With -m TABLE, w must be < 15, or == 16."; break;
    case GF_E_TAB_SSE: s = "With -m TABLE, SIMD|NOSIMD only applies to w=4."; break;
    case GF_E_TABSSE3: s = "With -m TABLE, -r SIMD, you need SSSE3 supported."; break;
    case GF_E_TAB_ALT: s = "With -m TABLE, you cannot use ALTMAP."; break;
    case GF_E_SP128AR: s = "With -m SPLIT, w=128, bad arg1/arg2."; break;
    case GF_E_SP128AL: s = "With -m SPLIT, w=128, -r SIMD requires -r ALTMAP."; break;
    case GF_E_SP128AS: s = "With -m SPLIT, w=128, ALTMAP needs SSSE3 supported."; break;
    case GF_E_SP128_A: s = "With -m SPLIT, w=128, -r ALTMAP only with arg1/arg2 = 4/128."; break;
    case GF_E_SP128_S: s = "With -m SPLIT, w=128, -r SIMD|NOSIMD only with arg1/arg2 = 4/128."; break;
    case GF_E_SPLIT_W: s = "With -m SPLIT, w must be in {8, 16, 32, 64, 128}."; break;
    case GF_E_SP_16AR: s = "With -m SPLIT, w=16, Bad arg1/arg2."; break;
    case GF_E_SP_16_A: s = "With -m SPLIT, w=16, -r ALTMAP only with arg1/arg2 = 4/16."; break;
    case GF_E_SP_16_S: s = "With -m SPLIT, w=16, -r SIMD|NOSIMD only with arg1/arg2 = 4/16."; break;
    case GF_E_SP_32AR: s = "With -m SPLIT, w=32, Bad arg1/arg2."; break;
    case GF_E_SP_32AS: s = "With -m SPLIT, w=32, -r ALTMAP needs SSSE3 supported."; break;
    case GF_E_SP_32_A: s = "With -m SPLIT, w=32, -r ALTMAP only with arg1/arg2 = 4/32."; break;
    case GF_E_SP_32_S: s = "With -m SPLIT, w=32, -r SIMD|NOSIMD only with arg1/arg2 = 4/32."; break;
    case GF_E_SP_64AR: s = "With -m SPLIT, w=64, Bad arg1/arg2."; break;
    case GF_E_SP_64AS: s = "With -m SPLIT, w=64, -r ALTMAP needs SSSE3 supported."; break;
    case GF_E_SP_64_A: s = "With -m SPLIT, w=64, -r ALTMAP only with arg1/arg2 = 4/64."; break;
    case GF_E_SP_64_S: s = "With -m SPLIT, w=64, -r SIMD|NOSIMD only with arg1/arg2 = 4/64."; break;
    case GF_E_SP_8_AR: s = "With -m SPLIT, w=8, Bad arg1/arg2."; break;
    case GF_E_SP_8__A: s = "With -m SPLIT, w=8, Can't have -r ALTMAP."; break;
    case GF_E_SP_SSE3: s = "With -m SPLIT, Need SSSE3 support for SIMD."; break;
    case GF_E_COMP_A2: s = "With -m COMPOSITE, arg1 must equal 2."; break;
    case GF_E_COMP_SS: s = "With -m COMPOSITE, -r SIMD and -r NOSIMD do not apply."; break;
    case GF_E_COMP__W: s = "With -m COMPOSITE, w must be 8, 16, 32, 64 or 128."; break;
    case GF_E_UNKFLAG: s = "Unknown method flag - should be -m, -d, -r or -p."; break;
    case GF_E_UNKNOWN: s = "Unknown multiplication type."; break;
    case GF_E_UNK_REG: s = "Unknown region type."; break;
    case GF_E_UNK_DIV: s = "Unknown division type."; break;
    default: s = "Undefined error.";
  }

  fprintf(stderr, "%s\n", s);
}

uint64_t gf_composite_get_default_poly(gf_t *base) 
{
  gf_internal_t *h;
  uint64_t rv;

  h = (gf_internal_t *) base->scratch;
  if (h->w == 4) {
    if (h->mult_type == GF_MULT_COMPOSITE) return 0;
    if (h->prim_poly == 0x13) return 2;
    return 0;
  } 
  if (h->w == 8) {
    if (h->mult_type == GF_MULT_COMPOSITE) return 0;
    if (h->prim_poly == 0x11d) return 3;
    return 0;
  }
  if (h->w == 16) {
    if (h->mult_type == GF_MULT_COMPOSITE) {
      rv = gf_composite_get_default_poly(h->base_gf);
      if (rv != h->prim_poly) return 0;
      if (rv == 3) return 0x105;
      return 0;
    } else {
      if (h->prim_poly == 0x1100b) return 2;
      if (h->prim_poly == 0x1002d) return 7;
      return 0;
    }
  }
  if (h->w == 32) {
    if (h->mult_type == GF_MULT_COMPOSITE) {
      rv = gf_composite_get_default_poly(h->base_gf);
      if (rv != h->prim_poly) return 0;
      if (rv == 2) return 0x10005;
      if (rv == 7) return 0x10008;
      if (rv == 0x105) return 0x10002;
      return 0;
    } else {
      if (h->prim_poly == 0x400007) return 2;
      if (h->prim_poly == 0xc5) return 3;
      return 0;
    }
  }
  if (h->w == 64) {
    if (h->mult_type == GF_MULT_COMPOSITE) {
      rv = gf_composite_get_default_poly(h->base_gf);
      if (rv != h->prim_poly) return 0;
      if (rv == 3) return 0x100000009ULL;
      if (rv == 2) return 0x100000004ULL;
      if (rv == 0x10005) return 0x100000003ULL;
      if (rv == 0x10002) return 0x100000005ULL;
      if (rv == 0x10008) return 0x100000006ULL;  /* JSP: (0x0x100000003 works too, 
                                                    but I want to differentiate cases). */
      return 0;
    } else {
      if (h->prim_poly == 0x1bULL) return 2;
      return 0;
    }
  }
  return 0;
}

int gf_error_check(int w, int mult_type, int region_type, int divide_type,
                   int arg1, int arg2, uint64_t poly, gf_t *base)
{
  int sse3 = 0;
  int sse2 = 0;
  int pclmul = 0;
  int rdouble, rquad, rlazy, rsimd, rnosimd, raltmap, rcauchy, tmp;
  gf_internal_t *sub;

  rdouble = (region_type & GF_REGION_DOUBLE_TABLE);
  rquad   = (region_type & GF_REGION_QUAD_TABLE);
  rlazy   = (region_type & GF_REGION_LAZY);
  rsimd   = (region_type & GF_REGION_SIMD);
  rnosimd = (region_type & GF_REGION_NOSIMD);
  raltmap = (region_type & GF_REGION_ALTMAP);
  rcauchy = (region_type & GF_REGION_CAUCHY);

  if (divide_type != GF_DIVIDE_DEFAULT &&
      divide_type != GF_DIVIDE_MATRIX && 
      divide_type != GF_DIVIDE_EUCLID) {
    _gf_errno = GF_E_UNK_DIV;
    return 0;
  }

  tmp = ( GF_REGION_DOUBLE_TABLE | GF_REGION_QUAD_TABLE | GF_REGION_LAZY |
          GF_REGION_SIMD | GF_REGION_NOSIMD | GF_REGION_ALTMAP |
          GF_REGION_CAUCHY );
  if (region_type & (~tmp)) { _gf_errno = GF_E_UNK_REG; return 0; }

#ifdef INTEL_SSE2
  if (gf_cpu_supports_intel_sse2) {
    sse2 = 1;
  }
#endif

#ifdef INTEL_SSSE3
  if (gf_cpu_supports_intel_ssse3) {
    sse3 = 1;
  }
#endif

#ifdef INTEL_SSE4_PCLMUL
  if (gf_cpu_supports_intel_pclmul) {
    pclmul = 1;
  }
#endif

#ifdef ARM_NEON
  if (gf_cpu_supports_arm_neon) {
    pclmul = (w == 4 || w == 8);
    sse3 = 1;
  }
#endif


  if (w < 1 || (w > 32 && w != 64 && w != 128)) { _gf_errno = GF_E_BAD___W; return 0; }
    
  if (mult_type != GF_MULT_COMPOSITE && w < 64) {
    if ((poly >> (w+1)) != 0)                   { _gf_errno = GF_E_BADPOLY; return 0; }
  }

  if (mult_type == GF_MULT_DEFAULT) {
    if (divide_type != GF_DIVIDE_DEFAULT) { _gf_errno = GF_E_MDEFDIV; return 0; }
    if (region_type != GF_REGION_DEFAULT) { _gf_errno = GF_E_MDEFREG; return 0; }
    if (arg1 != 0 || arg2 != 0)           { _gf_errno = GF_E_MDEFARG; return 0; }
    return 1;
  }
  
  if (rsimd && rnosimd)                              { _gf_errno = GF_E_SIMD_NO; return 0; }
  if (rcauchy && w > 32)                             { _gf_errno = GF_E_CAUGT32; return 0; }
  if (rcauchy && region_type != GF_REGION_CAUCHY)    { _gf_errno = GF_E_CAUCHYB; return 0; }
  if (rcauchy && mult_type == GF_MULT_COMPOSITE)     { _gf_errno = GF_E_CAUCOMP; return 0; }

  if (arg1 != 0 && mult_type != GF_MULT_COMPOSITE && 
      mult_type != GF_MULT_SPLIT_TABLE && mult_type != GF_MULT_GROUP) {
    _gf_errno = GF_E_ARG1SET;
    return 0;
  }

  if (arg2 != 0 && mult_type != GF_MULT_SPLIT_TABLE && mult_type != GF_MULT_GROUP) {
    _gf_errno = GF_E_ARG2SET;
    return 0;
  }

  if (divide_type == GF_DIVIDE_MATRIX && w > 32) { _gf_errno = GF_E_MATRIXW; return 0; }

  if (rdouble) {
    if (rquad)                      { _gf_errno = GF_E_DOUQUAD; return 0; }
    if (mult_type != GF_MULT_TABLE) { _gf_errno = GF_E_DOUBLET; return 0; }
    if (w != 4 && w != 8)           { _gf_errno = GF_E_DOUBLEW; return 0; }
    if (rsimd || rnosimd || raltmap) { _gf_errno = GF_E_DOUBLEJ; return 0; }
    if (rlazy && w == 4)            { _gf_errno = GF_E_DOUBLEL; return 0; }
    return 1;
  }

  if (rquad) {
    if (mult_type != GF_MULT_TABLE) { _gf_errno = GF_E_QUAD__T; return 0; }
    if (w != 4)                     { _gf_errno = GF_E_QUAD__W; return 0; }
    if (rsimd || rnosimd || raltmap) { _gf_errno = GF_E_QUAD__J; return 0; }
    return 1;
  }

  if (rlazy)                        { _gf_errno = GF_E_LAZY__X; return 0; }

  if (mult_type == GF_MULT_SHIFT) {
    if (raltmap)                    { _gf_errno = GF_E_ALTSHIF; return 0; }
    if (rsimd || rnosimd)           { _gf_errno = GF_E_SSESHIF; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_CARRY_FREE) {
    if (w != 4 && w != 8 && w != 16 &&
        w != 32 && w != 64 && w != 128)            { _gf_errno = GF_E_CFM___W; return 0; }
    if (w == 4 && (poly & 0xc))                    { _gf_errno = GF_E_CFM4POL; return 0; }
    if (w == 8 && (poly & 0x80))                   { _gf_errno = GF_E_CFM8POL; return 0; }
    if (w == 16 && (poly & 0xe000))                { _gf_errno = GF_E_CF16POL; return 0; }
    if (w == 32 && (poly & 0xfe000000))            { _gf_errno = GF_E_CF32POL; return 0; }
    if (w == 64 && (poly & 0xfffe000000000000ULL)) { _gf_errno = GF_E_CF64POL; return 0; }
    if (raltmap)                                   { _gf_errno = GF_E_ALT_CFM; return 0; }
    if (rsimd || rnosimd)                          { _gf_errno = GF_E_SSE_CFM; return 0; }
    if (!pclmul)                                   { _gf_errno = GF_E_PCLMULX; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_CARRY_FREE_GK) {
    if (w != 4 && w != 8 && w != 16 &&
        w != 32 && w != 64 && w != 128)            { _gf_errno = GF_E_CFM___W; return 0; }
    if (raltmap)                                   { _gf_errno = GF_E_ALT_CFM; return 0; }
    if (rsimd || rnosimd)                          { _gf_errno = GF_E_SSE_CFM; return 0; }
    if (!pclmul)                                   { _gf_errno = GF_E_PCLMULX; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_BYTWO_p || mult_type == GF_MULT_BYTWO_b) {
    if (raltmap)                    { _gf_errno = GF_E_ALT_BY2; return 0; }
    if (rsimd && !sse2)              { _gf_errno = GF_E_BY2_SSE; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_LOG_TABLE || mult_type == GF_MULT_LOG_ZERO
                                     || mult_type == GF_MULT_LOG_ZERO_EXT ) {
    if (w > 27)                     { _gf_errno = GF_E_LOGBADW; return 0; }
    if (raltmap || rsimd || rnosimd) { _gf_errno = GF_E_LOG___J; return 0; }

    if (mult_type == GF_MULT_LOG_TABLE) return 1;

    if (w != 8 && w != 16)          { _gf_errno = GF_E_ZERBADW; return 0; }

    if (mult_type == GF_MULT_LOG_ZERO) return 1;

    if (w != 8)                     { _gf_errno = GF_E_ZEXBADW; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_GROUP) {
    if (arg1 <= 0 || arg2 <= 0)                 { _gf_errno = GF_E_GR_ARGX; return 0; }
    if (w == 4 || w == 8)                       { _gf_errno = GF_E_GR_W_48; return 0; }
    if (w == 16 && (arg1 != 4 || arg2 != 4))     { _gf_errno = GF_E_GR_W_16; return 0; }
    if (w == 128 && (arg1 != 4 || 
       (arg2 != 4 && arg2 != 8 && arg2 != 16))) { _gf_errno = GF_E_GR_128A; return 0; }
    if (arg1 > 27 || arg2 > 27)                 { _gf_errno = GF_E_GR_A_27; return 0; }
    if (arg1 > w || arg2 > w)                   { _gf_errno = GF_E_GR_AR_W; return 0; }
    if (raltmap || rsimd || rnosimd)            { _gf_errno = GF_E_GR____J; return 0; }
    return 1;
  }
  
  if (mult_type == GF_MULT_TABLE) {
    if (w != 16 && w >= 15)                     { _gf_errno = GF_E_TABLE_W; return 0; }
    if (w != 4 && (rsimd || rnosimd))           { _gf_errno = GF_E_TAB_SSE; return 0; }
    if (rsimd && !sse3)                         { _gf_errno = GF_E_TABSSE3; return 0; }
    if (raltmap)                                { _gf_errno = GF_E_TAB_ALT; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_SPLIT_TABLE) {
    if (arg1 > arg2) {
      tmp = arg1;
      arg1 = arg2;
      arg2 = tmp;
    }
    if (w == 8) {
      if (arg1 != 4 || arg2 != 8)               { _gf_errno = GF_E_SP_8_AR; return 0; }
      if (rsimd && !sse3)                       { _gf_errno = GF_E_SP_SSE3; return 0; }
      if (raltmap)                              { _gf_errno = GF_E_SP_8__A; return 0; }
    } else if (w == 16) {
      if ((arg1 == 8 && arg2 == 8) ||
          (arg1 == 8 && arg2 == 16)) {
        if (rsimd || rnosimd)                   { _gf_errno = GF_E_SP_16_S; return 0; }
        if (raltmap)                            { _gf_errno = GF_E_SP_16_A; return 0; }
      } else if (arg1 == 4 && arg2 == 16) {
        if (rsimd && !sse3)                     { _gf_errno = GF_E_SP_SSE3; return 0; }
      } else                                    { _gf_errno = GF_E_SP_16AR; return 0; }
    } else if (w == 32) {
      if ((arg1 == 8 && arg2 == 8) ||
          (arg1 == 8 && arg2 == 32) ||
          (arg1 == 16 && arg2 == 32)) {
        if (rsimd || rnosimd)                   { _gf_errno = GF_E_SP_32_S; return 0; }
        if (raltmap)                            { _gf_errno = GF_E_SP_32_A; return 0; }
      } else if (arg1 == 4 && arg2 == 32) {
        if (rsimd && !sse3)                     { _gf_errno = GF_E_SP_SSE3; return 0; }
        if (raltmap && !sse3)                   { _gf_errno = GF_E_SP_32AS; return 0; }
        if (raltmap && rnosimd)                 { _gf_errno = GF_E_SP_32AS; return 0; }
      } else                                    { _gf_errno = GF_E_SP_32AR; return 0; }
    } else if (w == 64) {
      if ((arg1 == 8 && arg2 == 8) ||
          (arg1 == 8 && arg2 == 64) ||
          (arg1 == 16 && arg2 == 64)) {
        if (rsimd || rnosimd)                   { _gf_errno = GF_E_SP_64_S; return 0; }
        if (raltmap)                            { _gf_errno = GF_E_SP_64_A; return 0; }
      } else if (arg1 == 4 && arg2 == 64) {
        if (rsimd && !sse3)                     { _gf_errno = GF_E_SP_SSE3; return 0; }
        if (raltmap && !sse3)                   { _gf_errno = GF_E_SP_64AS; return 0; }
        if (raltmap && rnosimd)                 { _gf_errno = GF_E_SP_64AS; return 0; }
      } else                                    { _gf_errno = GF_E_SP_64AR; return 0; }
    } else if (w == 128) {
      if (arg1 == 8 && arg2 == 128) {
        if (rsimd || rnosimd)                   { _gf_errno = GF_E_SP128_S; return 0; }
        if (raltmap)                            { _gf_errno = GF_E_SP128_A; return 0; }
      } else if (arg1 == 4 && arg2 == 128) {
        if (rsimd && !sse3)                     { _gf_errno = GF_E_SP_SSE3; return 0; }
        if (raltmap && !sse3)                   { _gf_errno = GF_E_SP128AS; return 0; }
        if (raltmap && rnosimd)                 { _gf_errno = GF_E_SP128AS; return 0; }
      } else                                    { _gf_errno = GF_E_SP128AR; return 0; }
    } else                                      { _gf_errno = GF_E_SPLIT_W; return 0; }
    return 1;
  }

  if (mult_type == GF_MULT_COMPOSITE) {
    if (w != 8 && w != 16 && w != 32 
               && w != 64 && w != 128)          { _gf_errno = GF_E_COMP__W; return 0; }
    if (w < 128 && (poly >> (w/2)) != 0)                   { _gf_errno = GF_E_COMP_PP; return 0; }
    if (divide_type != GF_DIVIDE_DEFAULT)       { _gf_errno = GF_E_DIVCOMP; return 0; }
    if (arg1 != 2)                              { _gf_errno = GF_E_COMP_A2; return 0; }
    if (rsimd || rnosimd)                       { _gf_errno = GF_E_COMP_SS; return 0; }
    if (base != NULL) {
      sub = (gf_internal_t *) base->scratch;
      if (sub->w != w/2)                      { _gf_errno = GF_E_BASE__W; return 0; }
      if (poly == 0) {
        if (gf_composite_get_default_poly(base) == 0) { _gf_errno = GF_E_COMPXPP; return 0; }
      }
    }
    return 1;
  }

  _gf_errno = GF_E_UNKNOWN; 
  return 0;
}

int gf_scratch_size(int w, 
                    int mult_type, 
                    int region_type, 
                    int divide_type, 
                    int arg1, 
                    int arg2)
{
  if (gf_error_check(w, mult_type, region_type, divide_type, arg1, arg2, 0, NULL) == 0) return 0;

  switch(w) {
    case 4: return gf_w4_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    case 8: return gf_w8_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    case 16: return gf_w16_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    case 32: return gf_w32_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    case 64: return gf_w64_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    case 128: return gf_w128_scratch_size(mult_type, region_type, divide_type, arg1, arg2);
    default: return gf_wgen_scratch_size(w, mult_type, region_type, divide_type, arg1, arg2);
  }
}

extern int gf_size(gf_t *gf)
{
  gf_internal_t *h;
  int s;

  s = sizeof(gf_t);
  h = (gf_internal_t *) gf->scratch;
  s += gf_scratch_size(h->w, h->mult_type, h->region_type, h->divide_type, h->arg1, h->arg2);
  if (h->mult_type == GF_MULT_COMPOSITE) s += gf_size(h->base_gf);
  return s;
}


int gf_init_easy(gf_t *gf, int w)
{
  return gf_init_hard(gf, w, GF_MULT_DEFAULT, GF_REGION_DEFAULT, GF_DIVIDE_DEFAULT, 
                      0, 0, 0, NULL, NULL);
}

/* Allen: What's going on here is this function is putting info into the
       scratch mem of gf, and then calling the relevant REAL init
       func for the word size.  Probably done this way to consolidate
       those aspects of initialization that don't rely on word size,
       and then take care of word-size-specific stuff. */

int gf_init_hard(gf_t *gf, int w, int mult_type, 
                        int region_type,
                        int divide_type,
                        uint64_t prim_poly,
                        int arg1, int arg2,
                        gf_t *base_gf,
                        void *scratch_memory) 
{
  int sz;
  gf_internal_t *h;
 
  gf_cpu_identify();

  if (gf_error_check(w, mult_type, region_type, divide_type, 
                     arg1, arg2, prim_poly, base_gf) == 0) return 0;

  sz = gf_scratch_size(w, mult_type, region_type, divide_type, arg1, arg2);
  if (sz <= 0) return 0;  /* This shouldn't happen, as all errors should get caught
                             in gf_error_check() */
  
  if (scratch_memory == NULL) {
    h = (gf_internal_t *) malloc(sz);
    h->free_me = 1;
  } else {
    h = scratch_memory;
    h->free_me = 0;
  }
  gf->scratch = (void *) h;
  h->mult_type = mult_type;
  h->region_type = region_type;
  h->divide_type = divide_type;
  h->w = w;
  h->prim_poly = prim_poly;
  h->arg1 = arg1;
  h->arg2 = arg2;
  h->base_gf = base_gf;
  h->private = (void *) gf->scratch;
  h->private = (uint8_t *)h->private + (sizeof(gf_internal_t));
  gf->extract_word.w32 = NULL;

  switch(w) {
    case 4: return gf_w4_init(gf);
    case 8: return gf_w8_init(gf);
    case 16: return gf_w16_init(gf);
    case 32: return gf_w32_init(gf);
    case 64: return gf_w64_init(gf);
    case 128: return gf_w128_init(gf);
    default: return gf_wgen_init(gf);
  }
}

int gf_free(gf_t *gf, int recursive)
{
  gf_internal_t *h;

  h = (gf_internal_t *) gf->scratch;
  if (recursive && h->base_gf != NULL) {
    gf_free(h->base_gf, 1);
    free(h->base_gf);
  }
  if (h->free_me) free(h);
  return 0; /* Making compiler happy */
}

void gf_alignment_error(char *s, int a)
{
  fprintf(stderr, "Alignment error in %s:\n", s);
  fprintf(stderr, "   The source and destination buffers must be aligned to each other,\n");
  fprintf(stderr, "   and they must be aligned to a %d-byte address.\n", a);
  assert(0);
}

static 
void gf_invert_binary_matrix(uint32_t *mat, uint32_t *inv, int rows) {
  int cols, i, j;
  uint32_t tmp;

  cols = rows;

  for (i = 0; i < rows; i++) inv[i] = (1 << i);

  /* First -- convert into upper triangular */

  for (i = 0; i < cols; i++) {

    /* Swap rows if we ave a zero i,i element.  If we can't swap, then the
       matrix was not invertible */

    if ((mat[i] & (1 << i)) == 0) {
      for (j = i+1; j < rows && (mat[j] & (1 << i)) == 0; j++) ;
      if (j == rows) {
        fprintf(stderr, "galois_invert_matrix: Matrix not invertible!!\n");
        assert(0);
      }
      tmp = mat[i]; mat[i] = mat[j]; mat[j] = tmp;
      tmp = inv[i]; inv[i] = inv[j]; inv[j] = tmp;
    }

    /* Now for each j>i, add A_ji*Ai to Aj */
    for (j = i+1; j != rows; j++) {
      if ((mat[j] & (1 << i)) != 0) {
        mat[j] ^= mat[i];
        inv[j] ^= inv[i];
      }
    }
  }

  /* Now the matrix is upper triangular.  Start at the top and multiply down */

  for (i = rows-1; i >= 0; i--) {
    for (j = 0; j < i; j++) {
      if (mat[j] & (1 << i)) {
        /*  mat[j] ^= mat[i]; */
        inv[j] ^= inv[i];
      }
    }
  }
}

uint32_t gf_bitmatrix_inverse(uint32_t y, int w, uint32_t pp) 
{
  uint32_t mat[32], inv[32], mask;
  int i;

  mask = (w == 32) ? 0xffffffff : ((uint32_t)1 << w) - 1;
  for (i = 0; i < w; i++) {
    mat[i] = y;

    if (y & (1 << (w-1))) {
      y = y << 1;
      y = ((y ^ pp) & mask);
    } else {
      y = y << 1;
    }
  }

  gf_invert_binary_matrix(mat, inv, w);
  return inv[0];
}

void gf_two_byte_region_table_multiply(gf_region_data *rd, uint16_t *base)
{
  uint64_t a, prod;
  int xor;
  uint64_t *s64, *d64, *top;

  s64 = rd->s_start;
  d64 = rd->d_start;
  top = rd->d_top;
  xor = rd->xor;
  
  if (xor) {
    while (d64 != top) {
      a = *s64;
      prod = base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      prod ^= *d64;
      *d64 = prod;
      s64++;
      d64++;
    }
  } else {
    while (d64 != top) {
      a = *s64;
      prod = base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      a <<= 16;
      prod <<= 16;
      prod ^= base[a >> 48];
      *d64 = prod;
      s64++;
      d64++;
    }
  }
}

static void gf_slow_multiply_region(gf_region_data *rd, void *src, void *dest, void *s_top)
{
  uint8_t *s8, *d8;
  uint16_t *s16, *d16;
  uint32_t *s32, *d32;
  uint64_t *s64, *d64;
  gf_internal_t *h;
  int wb;
  uint32_t p, a;

  h = rd->gf->scratch;
  wb = (h->w)/8;
  if (wb == 0) wb = 1;
  
  while (src < s_top) {
    switch (h->w) {
    case 8:
      s8 = (uint8_t *) src;
      d8 = (uint8_t *) dest;
      *d8 = (rd->xor) ? (*d8 ^ rd->gf->multiply.w32(rd->gf, rd->val, *s8)) : 
                      rd->gf->multiply.w32(rd->gf, rd->val, *s8);
      break;
    case 4:
      s8 = (uint8_t *) src;
      d8 = (uint8_t *) dest;
      a = *s8;
      p = rd->gf->multiply.w32(rd->gf, rd->val, a&0xf);
      p |= (rd->gf->multiply.w32(rd->gf, rd->val, a >> 4) << 4);
      if (rd->xor) p ^= *d8;
      *d8 = p;
      break;
    case 16:
      s16 = (uint16_t *) src;
      d16 = (uint16_t *) dest;
      *d16 = (rd->xor) ? (*d16 ^ rd->gf->multiply.w32(rd->gf, rd->val, *s16)) : 
                      rd->gf->multiply.w32(rd->gf, rd->val, *s16);
      break;
    case 32:
      s32 = (uint32_t *) src;
      d32 = (uint32_t *) dest;
      *d32 = (rd->xor) ? (*d32 ^ rd->gf->multiply.w32(rd->gf, rd->val, *s32)) : 
                      rd->gf->multiply.w32(rd->gf, rd->val, *s32);
      break;
    case 64:
      s64 = (uint64_t *) src;
      d64 = (uint64_t *) dest;
      *d64 = (rd->xor) ? (*d64 ^ rd->gf->multiply.w64(rd->gf, rd->val, *s64)) : 
                      rd->gf->multiply.w64(rd->gf, rd->val, *s64);
      break;
    default:
      fprintf(stderr, "Error: gf_slow_multiply_region: w=%d not implemented.\n", h->w);
      exit(1);
    }
    src = (uint8_t *)src + wb;
    dest = (uint8_t *)dest + wb;
  }
}

/* JSP - The purpose of this procedure is to error check alignment,
   and to set up the region operation so that it can best leverage
   large words.

   It stores its information in rd.

   Assuming you're not doing Cauchy coding, (see below for that),
   then w will be 4, 8, 16, 32 or 64. It can't be 128 (probably
   should change that).

   src and dest must then be aligned on ceil(w/8)-byte boundaries.
   Moreover, bytes must be a multiple of ceil(w/8).  If the variable
   align is equal to ceil(w/8), then we will set s_start = src,
   d_start = dest, s_top to (src+bytes) and d_top to (dest+bytes).
   And we return -- the implementation will go ahead and do the
   multiplication on individual words (e.g. using discrete logs).

   If align is greater than ceil(w/8), then the implementation needs
   to work on groups of "align" bytes.  For example, suppose you are
   implementing BYTWO, without SSE. Then you will be doing the region
   multiplication in units of 8 bytes, so align = 8. Or, suppose you
   are doing a Quad table in GF(2^4). You will be doing the region
   multiplication in units of 2 bytes, so align = 2. Or, suppose you
   are doing split multiplication with SSE operations in GF(2^8).
   Then align = 16. Worse yet, suppose you are doing split
   multiplication with SSE operations in GF(2^16), with or without
   ALTMAP. Then, you will be doing the multiplication on 256 bits at
   a time.  So align = 32.

   When align does not equal ceil(w/8), we split the region
   multiplication into three parts.  We are going to make s_start be
   the first address greater than or equal to src that is a multiple
   of align.  s_top is going to be the largest address >= src+bytes
   such that (s_top - s_start) is a multiple of align.  We do the
   same with d_start and d_top.  When we say that "src and dest must
   be aligned with respect to each other, we mean that s_start-src
   must equal d_start-dest.

   Now, the region multiplication is done in three parts -- the part
   between src and s_start must be done using single words.
   Similarly, the part between s_top and src+bytes must also be done
   using single words.  The part between s_start and s_top will be
   done in chunks of "align" bytes.

   One final thing -- if align > 16, then s_start and d_start will be
   aligned on a 16 byte boundary.  Perhaps we should have two
   variables: align and chunksize.  Then we'd have s_start & d_start
   aligned to "align", and have s_top-s_start be a multiple of
   chunksize.  That may be less confusing, but it would be a big
   change.

   Finally, if align = -1, then we are doing Cauchy multiplication,
   using only XOR's.  In this case, we're not going to care about
   alignment because we are just doing XOR's.  Instead, the only
   thing we care about is that bytes must be a multiple of w.

   This is not to say that alignment doesn't matter in performance
   with XOR's.  See that discussion in gf_multby_one().

   After you call gf_set_region_data(), the procedure
   gf_do_initial_region_alignment() calls gf->multiply.w32() on
   everything between src and s_start.  The procedure
   gf_do_final_region_alignment() calls gf->multiply.w32() on
   everything between s_top and src+bytes.
   */

void gf_set_region_data(gf_region_data *rd,
  gf_t *gf,
  void *src,
  void *dest,
  int bytes,
  uint64_t val,
  int xor,
  int align)
{
  gf_internal_t *h = NULL;
  int wb;
  uint32_t a;
  unsigned long uls, uld;

  if (gf == NULL) {  /* JSP - Can be NULL if you're just doing XOR's */
    wb = 1;
  } else {
    h = gf->scratch;
    wb = (h->w)/8;
    if (wb == 0) wb = 1;
  }
  
  rd->gf = gf;
  rd->src = src;
  rd->dest = dest;
  rd->bytes = bytes;
  rd->val = val;
  rd->xor = xor;
  rd->align = align;

  uls = (unsigned long) src;
  uld = (unsigned long) dest;

  a = (align <= 16) ? align : 16;

  if (align == -1) { /* JSP: This is cauchy.  Error check bytes, then set up the pointers
                        so that there are no alignment regions. */
    if (h != NULL && bytes % h->w != 0) {
      fprintf(stderr, "Error in region multiply operation.\n");
      fprintf(stderr, "The size must be a multiple of %d bytes.\n", h->w);
      assert(0);
    }
  
    rd->s_start = src;
    rd->d_start = dest;
    rd->s_top = (uint8_t *)src + bytes;
    rd->d_top = (uint8_t *)src + bytes;
    return;
  }

  if (uls % a != uld % a) {
    fprintf(stderr, "Error in region multiply operation.\n");
    fprintf(stderr, "The source & destination pointers must be aligned with respect\n");
    fprintf(stderr, "to each other along a %d byte boundary.\n", a);
    fprintf(stderr, "Src = 0x%lx.  Dest = 0x%lx\n", (unsigned long) src,
            (unsigned long) dest);
    assert(0);
  }

  if (uls % wb != 0) {
    fprintf(stderr, "Error in region multiply operation.\n");
    fprintf(stderr, "The pointers must be aligned along a %d byte boundary.\n", wb);
    fprintf(stderr, "Src = 0x%lx.  Dest = 0x%lx\n", (unsigned long) src,
            (unsigned long) dest);
    assert(0);
  }

  if (bytes % wb != 0) {
    fprintf(stderr, "Error in region multiply operation.\n");
    fprintf(stderr, "The size must be a multiple of %d bytes.\n", wb);
    assert(0);
  }

  uls %= a;
  if (uls != 0) uls = (a-uls);
  rd->s_start = (uint8_t *)rd->src + uls;
  rd->d_start = (uint8_t *)rd->dest + uls;
  bytes -= uls;
  bytes -= (bytes % align);
  rd->s_top = (uint8_t *)rd->s_start + bytes;
  rd->d_top = (uint8_t *)rd->d_start + bytes;

}

void gf_do_initial_region_alignment(gf_region_data *rd)
{
  gf_slow_multiply_region(rd, rd->src, rd->dest, rd->s_start);
}

void gf_do_final_region_alignment(gf_region_data *rd)
{
  gf_slow_multiply_region(rd, rd->s_top, rd->d_top, (uint8_t *)rd->src+rd->bytes);
}

void gf_multby_zero(void *dest, int bytes, int xor) 
{
  if (xor) return;
  bzero(dest, bytes);
  return;
}

/* JSP - gf_multby_one tries to do this in the most efficient way
   possible.  If xor = 0, then simply call memcpy() since that
   should be optimized by the system.  Otherwise, try to do the xor
   in the following order:

   If src and dest are aligned with respect to each other on 16-byte
   boundaries and you have SSE instructions, then use aligned SSE
   instructions.

   If they aren't but you still have SSE instructions, use unaligned
   SSE instructions.

   If there are no SSE instructions, but they are aligned with
   respect to each other on 8-byte boundaries, then do them with
   uint64_t's.

   Otherwise, call gf_unaligned_xor(), which does the following:
   align a destination pointer along an 8-byte boundary, and then
   memcpy 32 bytes at a time from the src pointer to an array of
   doubles.  I'm not sure if that's the best -- probably needs
   testing, but this seems like it could be a black hole.
 */

static void gf_unaligned_xor(void *src, void *dest, int bytes);

void gf_multby_one(void *src, void *dest, int bytes, int xor) 
{
  unsigned long uls, uld;
  uint8_t *s8, *d8;
  uint64_t *s64, *d64, *dtop64;
  gf_region_data rd;

  if (!xor) {
    if (dest != src)
      memcpy(dest, src, bytes);
    return;
  }
  uls = (unsigned long) src;
  uld = (unsigned long) dest;

#ifdef   INTEL_SSE2
  if (gf_cpu_supports_intel_sse2) {
    __m128i ms, md;
    int abytes;
    s8 = (uint8_t *) src;
    d8 = (uint8_t *) dest;
    if (uls % 16 == uld % 16) {
      gf_set_region_data(&rd, NULL, src, dest, bytes, 1, xor, 16);
      while (s8 != rd.s_start) {
        *d8 ^= *s8;
        d8++;
        s8++;
      }
      while (s8 < (uint8_t *) rd.s_top) {
        ms = _mm_load_si128 ((__m128i *)(s8));
        md = _mm_load_si128 ((__m128i *)(d8));
        md = _mm_xor_si128(md, ms);
        _mm_store_si128((__m128i *)(d8), md);
        s8 += 16;
        d8 += 16;
      }
      while (s8 != (uint8_t *) src + bytes) {
        *d8 ^= *s8;
        d8++;
        s8++;
      }
      return;
    }

    abytes = (bytes & 0xfffffff0);

    while (d8 < (uint8_t *) dest + abytes) {
      ms = _mm_loadu_si128 ((__m128i *)(s8));
      md = _mm_loadu_si128 ((__m128i *)(d8));
      md = _mm_xor_si128(md, ms);
      _mm_storeu_si128((__m128i *)(d8), md);
      s8 += 16;
      d8 += 16;
    }
    while (d8 != (uint8_t *) dest+bytes) {
      *d8 ^= *s8;
      d8++;
      s8++;
    }
    return;
  }
#endif
#if defined(ARM_NEON)
  if (gf_cpu_supports_arm_neon) {
    s8 = (uint8_t *) src;
    d8 = (uint8_t *) dest;

    if (uls % 16 == uld % 16) {
      gf_set_region_data(&rd, NULL, src, dest, bytes, 1, xor, 16);
      while (s8 != rd.s_start) {
        *d8 ^= *s8;
        s8++;
        d8++;
      }
      while (s8 < (uint8_t *) rd.s_top) {
        uint8x16_t vs = vld1q_u8 (s8);
        uint8x16_t vd = vld1q_u8 (d8);
        uint8x16_t vr = veorq_u8 (vs, vd);
        vst1q_u8 (d8, vr);
        s8 += 16;
        d8 += 16;
      }
    } else {
      while (s8 + 15 < (uint8_t *) src + bytes) {
        uint8x16_t vs = vld1q_u8 (s8);
        uint8x16_t vd = vld1q_u8 (d8);
        uint8x16_t vr = veorq_u8 (vs, vd);
        vst1q_u8 (d8, vr);
        s8 += 16;
        d8 += 16;
      }
    }
    while (s8 < (uint8_t *) src + bytes) {
      *d8 ^= *s8;
      s8++;
      d8++;
    }
    return;
  }
#endif
  if (uls % 8 != uld % 8) {
    gf_unaligned_xor(src, dest, bytes);
    return;
  }
  
  gf_set_region_data(&rd, NULL, src, dest, bytes, 1, xor, 8);
  s8 = (uint8_t *) src;
  d8 = (uint8_t *) dest;
  while (d8 != rd.d_start) {
    *d8 ^= *s8;
    d8++;
    s8++;
  }
  dtop64 = (uint64_t *) rd.d_top;

  d64 = (uint64_t *) rd.d_start;
  s64 = (uint64_t *) rd.s_start;

  while (d64 < dtop64) {
    *d64 ^= *s64;
    d64++;
    s64++;
  }

  s8 = (uint8_t *) rd.s_top;
  d8 = (uint8_t *) rd.d_top;

  while (d8 != (uint8_t *) dest+bytes) {
    *d8 ^= *s8;
    d8++;
    s8++;
  }
  return;
}

#define UNALIGNED_BUFSIZE (8)

static void gf_unaligned_xor(void *src, void *dest, int bytes)
{
  uint64_t scopy[UNALIGNED_BUFSIZE], *d64;
  int i;
  gf_region_data rd;
  uint8_t *s8, *d8;

  /* JSP - call gf_set_region_data(), but use dest in both places.  This is
     because I only want to set up dest.  If I used src, gf_set_region_data()
     would fail because src and dest are not aligned to each other wrt 
     8-byte pointers.  I know this will actually align d_start to 16 bytes.
     If I change gf_set_region_data() to split alignment & chunksize, then 
     I could do this correctly. */

  gf_set_region_data(&rd, NULL, dest, dest, bytes, 1, 1, 8*UNALIGNED_BUFSIZE);
  s8 = (uint8_t *) src;
  d8 = (uint8_t *) dest;

  while (d8 < (uint8_t *) rd.d_start) {
    *d8 ^= *s8;
    d8++;
    s8++;
  }
  
  d64 = (uint64_t *) d8;
  while (d64 < (uint64_t *) rd.d_top) {
    memcpy(scopy, s8, 8*UNALIGNED_BUFSIZE);
    s8 += 8*UNALIGNED_BUFSIZE;
    for (i = 0; i < UNALIGNED_BUFSIZE; i++) {
      *d64 ^= scopy[i];
      d64++;
    }
  }
  
  d8 = (uint8_t *) d64;
  while (d8 < (uint8_t *) ((uint8_t *)dest+bytes)) {
    *d8 ^= *s8;
    d8++;
    s8++;
  }
}