File: gf_inline_time.c

package info (click to toggle)
gf-complete 1.0.2%2B2017.04.10.git.ea75cdf-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 1,272 kB
  • sloc: ansic: 16,714; sh: 573; makefile: 110
file content (170 lines) | stat: -rw-r--r-- 4,537 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 * GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic
 * James S. Plank, Ethan L. Miller, Kevin M. Greenan,
 * Benjamin A. Arnold, John A. Burnum, Adam W. Disney, Allen C. McBride.
 *
 * gf_inline_time.c
 *
 * Times inline single multiplication when w = 4, 8 or 16
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>

#include "gf_complete.h"
#include "gf_rand.h"

void
timer_start (double *t)
{
    struct timeval  tv;

    gettimeofday (&tv, NULL);
    *t = (double)tv.tv_sec + (double)tv.tv_usec * 1e-6;
}

double
timer_split (const double *t)
{
    struct timeval  tv;
    double  cur_t;

    gettimeofday (&tv, NULL);
    cur_t = (double)tv.tv_sec + (double)tv.tv_usec * 1e-6;
    return (cur_t - *t);
}

void problem(char *s)
{
  fprintf(stderr, "Timing test failed.\n");
  fprintf(stderr, "%s\n", s);
  exit(1);
}

void usage(char *s)
{
  fprintf(stderr, "usage: gf_inline_time w seed #elts iterations - does timing of single multiplies\n");
  fprintf(stderr, "\n");
  fprintf(stderr, "Legal w are: 4, 8 or 16\n");
  fprintf(stderr, "\n");
  fprintf(stderr, "Use -1 for time(0) as a seed.\n");
  fprintf(stderr, "\n");
  if (s != NULL) fprintf(stderr, "%s\n", s);
  exit(1);
}

int main(int argc, char **argv)
{
  int w, j, i, size, iterations;
  gf_t      gf;
  double timer, elapsed, dnum, num;
  uint8_t *ra = NULL, *rb = NULL, *mult4, *mult8;
  uint16_t *ra16 = NULL, *rb16 = NULL, *log16, *alog16;
  time_t t0;
  
  if (argc != 5) usage(NULL);
  if (sscanf(argv[1], "%d", &w) == 0) usage("Bad w\n");
  if (w != 4 && w != 8 && w != 16) usage("Bad w\n");
  if (sscanf(argv[2], "%ld", &t0) == 0) usage("Bad seed\n");
  if (sscanf(argv[3], "%d", &size) == 0) usage("Bad #elts\n");
  if (sscanf(argv[4], "%d", &iterations) == 0) usage("Bad iterations\n");
  if (t0 == -1) t0 = time(0);
  MOA_Seed(t0);

  num = size;

  gf_init_easy(&gf, w);
  
  printf("Seed: %ld\n", t0);

  if (w == 4 || w == 8) {
    ra = (uint8_t *) malloc(size);
    rb = (uint8_t *) malloc(size);

    if (ra == NULL || rb == NULL) { perror("malloc"); exit(1); }
  } else if (w == 16) {
    ra16 = (uint16_t *) malloc(size*2);
    rb16 = (uint16_t *) malloc(size*2);

    if (ra16 == NULL || rb16 == NULL) { perror("malloc"); exit(1); }
  }

  if (w == 4) {
    mult4 = gf_w4_get_mult_table(&gf);
    if (mult4 == NULL) {
      printf("Couldn't get inline multiplication table.\n");
      exit(1);
    }
    elapsed = 0;
    dnum = 0;
    for (i = 0; i < iterations; i++) {
      for (j = 0; j < size; j++) {
        ra[j] = MOA_Random_W(w, 1);
        rb[j] = MOA_Random_W(w, 1);
      }
      timer_start(&timer);
      for (j = 0; j < size; j++) {
        ra[j] = GF_W4_INLINE_MULTDIV(mult4, ra[j], rb[j]);
      }
      dnum += num;
      elapsed += timer_split(&timer);
    }
    printf("Inline mult:   %10.6lf s   Mops: %10.3lf    %10.3lf Mega-ops/s\n",
           elapsed, dnum/1024.0/1024.0, dnum/1024.0/1024.0/elapsed);

  } else if (w == 8) {
    mult8 = gf_w8_get_mult_table(&gf);
    if (mult8 == NULL) {
      printf("Couldn't get inline multiplication table.\n");
      exit(1);
    }
    elapsed = 0;
    dnum = 0;
    for (i = 0; i < iterations; i++) {
      for (j = 0; j < size; j++) {
        ra[j] = MOA_Random_W(w, 1);
        rb[j] = MOA_Random_W(w, 1);
      }
      timer_start(&timer);
      for (j = 0; j < size; j++) {
        ra[j] = GF_W8_INLINE_MULTDIV(mult8, ra[j], rb[j]);
      }
      dnum += num;
      elapsed += timer_split(&timer);
    }
    printf("Inline mult:   %10.6lf s   Mops: %10.3lf    %10.3lf Mega-ops/s\n",
           elapsed, dnum/1024.0/1024.0, dnum/1024.0/1024.0/elapsed);
  } else if (w == 16) {
    log16 = gf_w16_get_log_table(&gf);
    alog16 = gf_w16_get_mult_alog_table(&gf);
    if (log16 == NULL) {
      printf("Couldn't get inline multiplication table.\n");
      exit(1);
    }
    elapsed = 0;
    dnum = 0;
    for (i = 0; i < iterations; i++) {
      for (j = 0; j < size; j++) {
        ra16[j] = MOA_Random_W(w, 1);
        rb16[j] = MOA_Random_W(w, 1);
      }
      timer_start(&timer);
      for (j = 0; j < size; j++) {
        ra16[j] = GF_W16_INLINE_MULT(log16, alog16, ra16[j], rb16[j]);
      }
      dnum += num;
      elapsed += timer_split(&timer);
    }
    printf("Inline mult:   %10.6lf s   Mops: %10.3lf    %10.3lf Mega-ops/s\n",
           elapsed, dnum/1024.0/1024.0, dnum/1024.0/1024.0/elapsed);
  }
  free (ra);
  free (rb);
  free (ra16);
  free (rb16);
  return 0;
}