File: halfgcd.cpp

package info (click to toggle)
gf2x 1.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,000 kB
  • sloc: ansic: 14,162; sh: 7,809; cpp: 1,500; makefile: 980; perl: 176
file content (431 lines) | stat: -rw-r--r-- 10,286 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/* This file is part of the gf2x library.

   Copyright 2007, 2008, 2009
   Richard Brent, Pierrick Gaudry, Emmanuel Thome', Paul Zimmermann

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 3 of the License, or (at your
   option) any later version.

   This program is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.

   You should have received a copy of the GNU General Public License along
   with this program; see the file COPYING.  If not, write to the Free
   Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
   02111-1307, USA.
*/

/* Subquadratic gcd over GF(2)[x]. */

// #define BOGONG	// Selects routines that run well on bogong,
			// a 2.2 Ghz AMD Opteron 275 at ANU

#undef STATS		// If defined, statistics will be gathered
			// and printed on stdout


#include <NTL/GF2X.h>

#include "halfgcd.hpp"

/* This threshold controls the internal calls to HalfGCD. */

#define NTL_GF2X_HalfGCD_CROSSOVER (4*NTL_BITS_PER_LONG)

/* this threshold controls the calls in FastGCD, thus is less sensitive */
#define NTL_GF2X_GCD_CROSSOVER (5*NTL_GF2X_HalfGCD_CROSSOVER)

#ifdef STATS
long mulktm = 0x3fffff;		// mask for mul1kt, mul2kt
long addktm = 0xffff;		// mask for Mul1kt, Add1kt
long mul1kt = 0;		// counts calls to mul1 or mul1rpb
long mul2kt = 0;		// counts calls to mul2 or mul2t
long Mul1kt = 0;		// counts calls to mul_1_n
long Mul1kts = 0;		// sum of sizes sb in calls to mul_1_n
long Add1kt = 0;		// counts calls to addmul_1_n
long Add1kts = 0;		// sum of sizes sb in calls to addmul_1_n
#endif

#include "gf2x.h"

using namespace NTL;

class GF2XMatrix {
private:

   GF2XMatrix(const GF2XMatrix&);  // disable
   GF2X elts[2][2];

public:

   GF2XMatrix() { }
   ~GF2XMatrix() { }

   void operator=(const GF2XMatrix&);
   GF2X& operator() (long i, long j) { return elts[i][j]; }
   const GF2X& operator() (long i, long j) const { return elts[i][j]; }
};

void mul_gen(GF2X& c, const GF2X& a, const GF2X& b)
{
   long sa = a.xrep.length();
   long sb = b.xrep.length();

   if (sa <= 0 || sb <= 0) {
      clear(c);
      return;
   }
   c.xrep.SetLength(sa+sb);
   /* gf2x_mul now properly handles possible aliasing a==c and b==c */
   gf2x_mul(c.xrep.elts(), a.xrep.elts(), sa, b.xrep.elts(), sb);
   c.normalize();
}


void
mul (GF2X& U, GF2X& V, const GF2XMatrix& M)
// (U, V)^T = M*(U, V)^T
{
   GF2X RU, RV, R1, R2;
   // RU = U
   // RV = V

   // R1 = M(0,0)
   mul_gen(R1, M(0,0), U);
   // R2 = M(0,1)
   mul_gen(R2, M(0,1), V);
   add(R2, R1, R2);

   // R1 = M(1,0)
   mul_gen(R1, M(1,0), U);
   U = R2; // previous value
   // R2 = M(1,1)
   mul_gen(R2, M(1,1), V);
   add(V, R1, R2);
}

void
mul (GF2XMatrix& A, GF2XMatrix& B, GF2XMatrix& C)
// A = B*C, B and C are destroyed
{
   GF2X B00, B01, B10, B11, C0, C1, T1, T2;

   mul_gen(T1, B(0,0), C(0,0));
   mul_gen(T2, B(0,1), C(1,0));
   add(A(0,0), T1, T2);

   mul_gen(T1, B(1,0), C(0,0));
   mul_gen(T2, B(1,1), C(1,0));
   add(A(1,0), T1, T2);

   C(0,0).kill();
   C(1,0).kill();

   mul_gen(T1, B(0,0), C(0,1));
   mul_gen(T2, B(0,1), C(1,1));
   add(A(0,1), T1, T2);

   mul_gen(T1, B(1,0), C(0,1));
   mul_gen(T2, B(1,1), C(1,1));
   add(A(1,1), T1, T2);

   C(0,1).kill();
   C(1,1).kill();

   B(0,0).kill();
   B(1,0).kill();
   B(0,1).kill();
   B(1,1).kill();
}

void
strassen_mul (GF2XMatrix& C, GF2XMatrix& A, GF2XMatrix& B)
// C = A*B, A and B are destroyed
/* we follow the code from SAGE 1.6, file strassen.pyx */
{
  GF2X S0, T0, S1, T1, S2, T2, S3, T3, P0, P1, P2, P3, P4, P5, P6;

  add (S0, A(1,0), A(1,1));
  add (T0, B(0,1), B(0,0));
  add (S1, S0, A(0,0));
  add (T1, B(1,1), T0);
  add (S2, A(0,0), A(1,0));
  add (T2, B(1,1), B(0,1));
  add (S3, A(0,1), S1);
  add (T3, B(1,0), T1);
  mul_gen (P0, A(0,0), B(0,0));
  mul_gen (P1, A(0,1), B(1,0));
  mul_gen (P2, S0, T0);
  mul_gen (P3, S1, T1);
  mul_gen (P4, S2, T2);
  mul_gen (P5, S3, B(1,1));
  mul_gen (P6, A(1,1), T3);
  add (C(0,0), P0, P1);     /* U0 */
  add (C(0,1), P0, P3);     /* U1 */
  add (C(1,1), C(0,1), P4); /* U2 */
  add (C(1,0), C(1,1), P6); /* U3 */
  add (C(1,1), C(1,1), P2); /* U4 */
  add (C(0,1), C(0,1), P2); /* U5 */
  add (C(0,1), C(0,1), P5); /* U6 */
  A(0,0).kill();
  A(1,0).kill();
  A(0,1).kill();
  A(1,1).kill();
  B(0,0).kill();
  B(1,0).kill();
  B(0,1).kill();
  B(1,1).kill();
}

void
IterHalfGCD (GF2XMatrix& M_out, GF2X& U, GF2X& V, long d_red)
{
   M_out(0,0).SetMaxLength(d_red);
   M_out(0,1).SetMaxLength(d_red);
   M_out(1,0).SetMaxLength(d_red);
   M_out(1,1).SetMaxLength(d_red);

   set(M_out(0,0));   clear(M_out(0,1));
   clear(M_out(1,0)); set(M_out(1,1));

   long goal = deg(U) - d_red;

   if (deg(V) <= goal)
      return;

   GF2X Q, t(INIT_SIZE, d_red);

   while (deg(V) > goal) {
     /* For the gcd of two polynomials of degree < 74207281,
	this PlainDivRem() call takes about 20% of the total gcd time.
	Here U and V have degree less than about 2*NTL_GF2X_HalfGCD_CROSSOVER,
	and usually deg(V) = deg(U) - <small value>. */
      PlainDivRem(Q, U, U, V);
      swap(U, V);

      mul_gen(t, Q, M_out(1,0));
      add(t, M_out(0,0), t); // add=sub over GF2
      M_out(0,0) = M_out(1,0);
      M_out(1,0) = t;

      mul_gen(t, Q, M_out(1,1));
      add(t, M_out(0,1), t); // add=sub over GF2
      M_out(0,1) = M_out(1,1);
      M_out(1,1) = t;
   }
}

void GF2XMatrix::operator=(const GF2XMatrix& M)
{
   elts[0][0] = M.elts[0][0];
   elts[0][1] = M.elts[0][1];
   elts[1][0] = M.elts[1][0];
   elts[1][1] = M.elts[1][1];
}

// c <- a mod x^n, with n >= 0
void
RightShiftRem (GF2X& c, const GF2X& a, long n)
{
  if (deg(a) < n) // covers a=0 too
    {
      c = a;
      return;
    }

  long sa = a.xrep.length(); // number of words of a
  long wn = n / NTL_BITS_PER_LONG;
  long bn = n - wn * NTL_BITS_PER_LONG; // #bits of ap[wn]
  if (wn >= sa)
    {
      wn = sa;
      bn = 0;
    }

  c.xrep.SetLength (wn + (bn != 0));

   _ntl_ulong *cp = c.xrep.elts();
   const _ntl_ulong *ap = a.xrep.elts();

   long i;

   for (i = 0; i < wn; i++)
     cp[i] = ap[i];
   if (bn)
     cp[wn] = ap[wn] & ((1UL << bn) - 1UL);

   c.normalize();
}

// same as HalfGCD, except U and V are replaced by U' and V'
// if extended is zero, the matrix M_out is not computed, and the inputs are
// fully reduced.
// We want to reduce deg(V) to <= deg(U) - d_red
// Usually if deg(U) = m, then d_red = m/2
void
HalfGCD2 (GF2XMatrix& M_out, GF2X& U, GF2X& V, long d_red, int extended)
{
  long degU = deg(U);

   if (IsZero(V) || deg(V) <= degU - d_red)
     {
       if (extended != 0)
         {
           set(M_out(0,0));   clear(M_out(0,1));
           clear(M_out(1,0)); set(M_out(1,1));
         }
       return;
     }

   if (d_red <= NTL_GF2X_HalfGCD_CROSSOVER)
     {
       IterHalfGCD(M_out, U, V, d_red);
       return;
     }

   long d1 = (d_red + 1) / 2;       /* d1 is about m/4 */
   if (extended == 0) d1 = deg(U) / 4;
   if (d1 < 1) d1 = 1;
   if (d1 >= d_red) d1 = d_red - 1;

   long n = degU - 2 * d1 + 2;      /* n is the ignored part, about m/2 */
   if (n < 0) n = 0;

   GF2X U1, V1;

   if (n != 0)
     {
       RightShiftRem (U1, U, n); /* U1 = U mod x^n: m/2 bits */
       RightShiftRem (V1, V, n); /* V1 = V mod x^n: m/2 bits */
       RightShift (U, U, n);     /* U = U div x^n has about m/2 bits */
       RightShift (V, V, n);     /* V = V div x^n has about m/2 bits */
     }

   GF2XMatrix M1;

   HalfGCD2 (M1, U, V, d1, extended || (n != 0));
   /* the entries of M1 have m/4 bits, and U,V have been reduced to m/4 bits */

   if (n != 0)
     {
       LeftShift (U, U, n);
       LeftShift (V, V, n);
       mul (U1, V1, M1); /* U1,V1:m/2 M1:m/4 cost: 4 M(m/2,m/4) */
       add (U, U, U1);
       add (V, V, V1);
     }

   /* now U, V have 3m/4 bits */

   // FIXME (24 June 2007): shouldn't it be deg(U) instead of deg(V) below?
   long d2 = deg(V) - (degU - d_red); /* should be about m/2 */

   if (IsZero(V) || d2 <= 0)
     {
       if (extended != 0)
         M_out = M1;
       return;
     }

   GF2X Q;
   GF2XMatrix M2;

   /* this PlainDivRem() call takes negligible time */
   PlainDivRem (Q, U, U, V);
   swap (U, V);

   if (extended)
     {
       GF2X t;

       mul_gen (t, Q, M1(1,0));
       add (t, M1(0,0), t);
       swap (M1(0,0), M1(1,0));
       swap (M1(1,0), t);

       mul_gen (t, Q, M1(1,1));
       add (t, M1(0,1), t);
       swap (M1(0,1), M1(1,1));
       swap (M1(1,1), t);
     }
   else
     d2 = deg(U); // fully reduce V

   if (IsZero(V) || deg(V) <= degU - d_red)
     {
       if (extended)
         M_out = M1;
       return;
     }

   n = deg(U) - 2 * d2 + 2; /* should be about m/4 */
   if (n < 0 || extended == 0) n = 0;

   if (n != 0)
     {
       RightShiftRem (U1, U, n); /* U1,V1 have m/4 bits */
       RightShiftRem (V1, V, n);
       RightShift(U, U, n);      /* U,V have m/2 bits */
       RightShift(V, V, n);
     }

   HalfGCD2 (M2, U, V, d2, extended || (n != 0));
   /* now U,V have m/4 bits, like the entries of M2 */

   if (n != 0)
     {
       LeftShift (U, U, n);
       LeftShift (V, V, n);
       mul (U1, V1, M2); /* 4 M(m/4) */
       add (U, U, U1);
       add (V, V, V1);
     }

   if (extended)
     strassen_mul (M_out, M2, M1); /* 8 M(m/4) */
}

/* in the general case, we have deg(u) and deg(v) about the same here */
void FastGCD(GF2X& d, const GF2X& u, const GF2X& v)
{
   GF2X u1, v1;
   GF2XMatrix M1;

   u1 = u;
   v1 = v;

   if (deg(u1) == deg(v1)) {
      if (IsZero(u1)) {
         clear(d);
         return;
      }

      rem(v1, v1, u1);
   }
   else if (deg(u1) < deg(v1)) {
      swap(u1, v1);
   }

   // deg(u1) > deg(v1)

   /* in practice this while loop will be performed only once,
      since HalfGCD fully reduces the inputs */
   while (deg(u1) > NTL_GF2X_GCD_CROSSOVER && !IsZero(v1))
     {
       HalfGCD2 (M1, u1, v1, deg (u1), 0);

       if (!IsZero(v1))
         {
           rem(u1, u1, v1);
           swap(u1, v1);
         }
     }

   // base case.
   GCD(d, u1, v1);
}