File: tropical.cpp

package info (click to toggle)
gfan 0.3dfsg-1.1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 2,016 kB
  • sloc: cpp: 17,728; makefile: 251
file content (250 lines) | stat: -rw-r--r-- 6,193 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include "tropical.h"
#include "vektor.h"
#include "lp.h"
#include "wallideal.h"
#include "printer.h"
#include "buchberger.h"
#include "division.h"

bool isFullColored(IntegerVectorList const &inequalityColors, IntegerVector const &v)
{
  assert(inequalityColors.size()==v.size());

  int nColors=inequalityColors.begin()->size();
  for(int i=0;i<nColors;i++)
    {
      bool colored=false;
      int j=0;
      for(IntegerVectorList::const_iterator J=inequalityColors.begin();J!=inequalityColors.end();J++)
	{
	  if(v[j])
	    {
	      if((*J)[i])colored=true;
	    }

	  j++;
	}
      if(!colored)return false;
    }
  return true;
}

static bool increase(IntegerVector &v)
{
  int i=0;
  while(i<v.size() && v[i]==1)
    {
      v[i]=0;
      i++;
    }
  if(i==v.size())return false;
  v[i]=1;
  return true;
}

static bool increaseSkip(IntegerVector &v)
{
  int i=0;
  while(i<v.size() && v[i]==0)
    {
      i++;
    }
  if(i==v.size())return false;
  while(i<v.size() && v[i]==1)
    {
      v[i]=0;
      i++;
    }
  if(i==v.size())return false;
  v[i]=1;
  return true;
}

PolynomialSetList fullColoredIdeals(PolynomialSet const &g, bool skipColorTest)
{
  // by computing the cone faces in the most stupid way
  PolynomialSetList ret;
  IntegerVectorList inequalities=wallInequalities(g);

  {
    IntegerVectorList normals=wallRemoveScaledInequalities(inequalities);
    IntegerVectorList facets;
    for(IntegerVectorList::const_iterator i=normals.begin();i!=normals.end();i++)
      //if(wallContainsPositiveVector(*i))
      if(isFacet(normals,i))
        {
	  facets.push_back(*i);
        }
    inequalities=facets;
  }
  fprintf(Stderr,"INEQUALITIES\n");
  AsciiPrinter(Stderr).printVectorList(inequalities);



  assert(!inequalities.empty());

  IntegerVectorList inequalityColors;

  for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
    {
      IntegerVector colors(g.size());
      int j=0;
      for(PolynomialSet::const_iterator J=g.begin();J!=g.end();J++)
	{
	  PolynomialSet temp(g.getRing());
	  temp.push_back(*J);
	  IntegerVectorList tempInequalities=wallInequalities(temp);
	  bool colored=false;
	  
	  for(IntegerVectorList::const_iterator k=tempInequalities.begin();k!=tempInequalities.end();k++)
	    {
	      if(dependent(*k,*i))
		{
		  colored=true;
		  break;
		}
	    }
	  colors[j]=colored;
	  j++;
	}
      //      AsciiPrinter(Stderr).printVector(colors);
      inequalityColors.push_back(colors);
    }

  //  AsciiPrinter(Stderr).printVectorList(inequalityColors);

  IntegerVector equalitySet(inequalities.size());
  bool skip;
  do
    {
      AsciiPrinter(Stderr).printVector(equalitySet);fprintf(Stderr,"\n");
      skip=false;
      if(skipColorTest || isFullColored(inequalityColors,equalitySet))
	{
	  if(hasInteriorPoint(inequalities,true,&equalitySet))
	    {
	      fprintf(Stderr,"Adding: ");
	      AsciiPrinter(Stderr).printVector(equalitySet);

	      IntegerVectorList es;
	      int i=0;
	      for(IntegerVectorList::const_iterator I=inequalities.begin();I!=inequalities.end();I++)
		{
		  if(equalitySet[i])es.push_back(*I);
		  i++;
		}
	      PolynomialSet w=lowerDimensionalWallIdeal(g,es);
	      //AsciiPrinter(Stderr).printPolynomialSet(w);
	      ret.push_back(w);
	    }
	  else
	    skip=true;
	}
    }
  while(increase(equalitySet));
  //  while(skip ? increaseSkip(equalitySet) : increase(equalitySet));

  return ret;
}


/*
Computes a monomial in the ideal. The monomial will have variables x_m...x_n-1
Recursive. The monomial is assumed to exist.
The ideal is assumed to be homogeneous
*/
Term computeTermInIdeal(PolynomialSet const &ideal, int m)
{
  assert(!ideal.empty());

  int n=ideal.begin()->numberOfVariablesInRing();

  //  fprintf(Stderr,"computTermInIdeal(%i,%i)\n",m,n);
  //  AsciiPrinter(Stderr).printPolynomialSet(ideal);


  if(m>=n)
    {
      Polynomial p=*ideal.begin();
      assert(!p.isZero());
      p.mark(LexicographicTermOrder());
      Term t=p.getMarked();
      t.m.exponent=IntegerVector(n);
      //fprintf(Stderr,"returning\n");
      return t;
    }  
  PolynomialSet g=ideal;
  buchberger(&g,ReverseLexicographicTermOrder(m+1)); //is this the right order?
  //fprintf(Stderr,"GB:\n");
  //AsciiPrinter(Stderr).printPolynomialSet(g);

  PolynomialSet g2=g;
  for(PolynomialSet::iterator j=g.begin();j!=g.end();j++)
    j->saturate(m);
  //AsciiPrinter(Stderr).printPolynomialSet(g);
  buchberger(&g,ReverseLexicographicTermOrder(m)); //is this the right order?
  //AsciiPrinter(Stderr).printPolynomialSet(g);
  Term a=computeTermInIdeal(g,m+1);
  //fprintf(Stderr,"Returned term:");
  //AsciiPrinter(Stderr).printPolynomial(Polynomial(a));
  //fprintf(Stderr,"\n");
  for(int i=0;true;i++)
    {
      a.m.exponent[m]=i;
      Polynomial p=Polynomial(a);

      if(division(p,g2,LexicographicTermOrder()).isZero())return a;
    }
  assert(0);
  return a;
}

bool containsMonomial(PolynomialSet const &ideal)
{
  // Assuming the ideal is homogeneous

  if(ideal.empty())return false;

  for(PolynomialSet::const_iterator i=ideal.begin();i!=ideal.end();i++)
    if(i->isMonomial())return true;

  int n=ideal.begin()->numberOfVariablesInRing();

  PolynomialSet g=ideal;
  for(int i=0;i<n;i++)
    {
      buchberger(&g,ReverseLexicographicTermOrder(i)); 
     //  fprintf(Stderr,"before:");
      //  AsciiPrinter(Stderr).printPolynomialSet(g);
      for(PolynomialSet::iterator j=g.begin();j!=g.end();j++)
	j->saturate();
      //  fprintf(Stderr,"after:");
      //  AsciiPrinter(Stderr).printPolynomialSet(g);
    }
  buchberger(&g,ReverseLexicographicTermOrder(0));
  //  fprintf(Stderr,"after:");
  //  AsciiPrinter(Stderr).printPolynomialSet(g);

  return g.size()==1 && g.begin()->isMonomial();
}

PolynomialSet saturatedIdeal(PolynomialSet const &ideal)
{
  // Assuming the ideal is homogeneous

  assert(!ideal.empty());

  int n=ideal.begin()->numberOfVariablesInRing();

  PolynomialSet g=ideal;
  for(int i=0;i<n;i++)
    {
      buchberger(&g,ReverseLexicographicTermOrder(i));
      for(PolynomialSet::iterator j=g.begin();j!=g.end();j++)
	j->saturate();
    }
  buchberger(&g,ReverseLexicographicTermOrder(0));

  return g;
}