1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
#include "printer.h"
#include "parser.h"
#include "gfanapplication.h"
#include "division.h"
#include "log.h"
class DoesIdealContainApplication : public GFanApplication
{
public:
const char *helpText()
{
return "This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.\n";
}
DoesIdealContainApplication()
{
registerOptions();
}
char *name()
{
return "_doesidealcontain";
}
int main()
{
FileParser P(Stdin);
PolynomialSet a=P.parsePolynomialSetWithRing();
PolynomialSet b=P.parsePolynomialSet(a.getRing());
bool c=true;
for(PolynomialSet::const_iterator i=b.begin();i!=b.end();i++)
{
Polynomial remainder=division(*i,a,LexicographicTermOrder());
log2 AsciiPrinter(Stderr).printString("Remainder: ");
log2 AsciiPrinter(Stderr).printPolynomial(remainder);
log2 AsciiPrinter(Stderr).printNewLine();
if(!remainder.isZero())
{
log1 AsciiPrinter(Stderr).printString("Polynomial not in ideal: ");
log1 AsciiPrinter(Stderr).printPolynomial(*i);
log1 AsciiPrinter(Stderr).printNewLine();
c=false;
break;
}
}
AsciiPrinter(Stdout).printInteger(c);
AsciiPrinter(Stdout).printNewLine();
return 0;
}
};
static DoesIdealContainApplication theApplication;
|