1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include "vektor.h"
#include "printer.h"
#include "parser.h"
#include "gfanapplication.h"
#include "minkowskisum.h"
#include "newtonpolytope.h"
#include "buchberger.h"
#include "wallideal.h"
#include "lp.h"
#include "tropical.h"
#include "division.h"
#include "bergman.h"
#include "tropical2.h"
#include "dimension.h"
#include "timer.h"
class TropicalStartingConeApplication : public GFanApplication
{
SimpleOption useThisConeOption;
SimpleOption dimensionOption;
public:
bool includeInDefaultInstallation()
{
return true;
}
const char *helpText()
{
return "This program attempts to compute a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. If unsuccessful the program will say so. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.\n";
}
TropicalStartingConeApplication():
useThisConeOption("-g","Tell the program that the input is already a reduced Groebner basis."),
dimensionOption("-d","Output dimension information to standard error.")
{
registerOptions();
}
char *name()
{
return "_tropicalstartingcone";
}
int main()
{
lpSetSolver("cddgmp");
FileParser P(Stdin);
PolynomialSet g=P.parsePolynomialSetWithRing();
if(!useThisConeOption.getValue())
{
buchberger(&g,StandardGradedLexicographicTermOrder());
}
// assert(!containsMonomial(g));
if(dimensionOption.getValue())
{
fprintf(Stderr,"Krull dimension of input ideal: %i\n",krullDimension(g));
fprintf(Stderr,"Dimension of homogeneity space for full ideal: %i\n",dimensionOfHomogeneitySpace(g));
}
PolynomialSet fullBasis(g.getRing());
PolynomialSet g2=guessInitialIdealWithoutMonomial(g,&fullBasis,false); //CHANGETHIS to false
// PolynomialSet g2=guessInitialIdealWithoutMonomial(g,&fullBasis,true); //CHANGETHIS to false
if(dimensionOption.getValue())
{
fprintf(Stderr,"Krull dimension of input ideal: %i\n",krullDimension(g));
fprintf(Stderr,"Dimension of homogeneity space for full ideal: %i\n",dimensionOfHomogeneitySpace(g));
fprintf(Stderr,"Dimension of homogeneity space for initial ideal: %i\n",dimensionOfHomogeneitySpace(g2));
}
AsciiPrinter(Stdout).printPolynomialRing(g2.getRing());
AsciiPrinter(Stdout).printNewLine();
AsciiPrinter(Stdout).printPolynomialSet(g2);
AsciiPrinter(Stdout).printPolynomialSet(fullBasis);
return 0;
}
};
static TropicalStartingConeApplication theApplication;
|