1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#include "division.h"
#include "printer.h"
#include "timer.h"
static Timer divisionTimer("Division",1);
static Timer divisionTimer1("Division1",1);
static Timer divisionTimer2("Division2",1);
static Timer divisionTimer3("Division3",1);
static Timer divisionTimer4("Division4",1);
Polynomial division1(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q);
typedef map<Monomial,Polynomial,TermMapCompare> ReductionCache;
Polynomial division(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q)
{
return division1(p,l,termOrder,q);
}
Polynomial smartDivision(Polynomial p, PolynomialSet l, TermOrder const &termOrder)
{
Polynomial r(p.getRing());
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
r+=division(Term(i->second,Monomial(p.getRing(),i->first.exponent)),l,termOrder);
}
return r;
}
Polynomial division1(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q)
{
PolynomialRing theRing=p.getRing();
TimerScope ts(&divisionTimer);
if(q)
{
*q=PolynomialSet(theRing);
for(PolynomialSet::const_iterator i=l.begin();i!=l.end();i++)
q->push_back(Polynomial(p.getRing()));
}
Polynomial r(p.getRing());
while(!p.isZero())
{
// AsciiPrinter(Stderr).printPolynomial(p);
// fprintf(Stderr,"Number Of terms: %i\n",p.terms.size());
p.mark(termOrder);
Term initial=p.getMarked();
PolynomialSet::const_iterator i;
PolynomialSet::iterator j;
if(q)j=q->begin();
{
TimerScope ts(&divisionTimer2);
for(i=l.begin();i!=l.end();i++)
{
if(i->getMarked().m.exponent.divides(initial.m.exponent))break;
if(q)j++;
}
}
{
TimerScope ts(&divisionTimer3);
if(i!=l.end())
{
Term s(-initial.c*i->getMarked().c.inverse(),Monomial(p.getRing(),initial.m.exponent-i->getMarked().m.exponent));
p.madd(s,*i);
if(q)*j+=Polynomial(s);
}
else
{
TimerScope ts(&divisionTimer4);
p-=initial;
r+=initial;
}
}
}
return r;
}
Polynomial divisionLift(Polynomial p, PolynomialSet l, PolynomialSet lLift, TermOrder const &termOrder)
{
Polynomial lift(p.getRing());
Polynomial r(p.getRing());
Monomial marked=p.getMarked().m;
for(PolynomialSet::iterator i=l.begin();i!=l.end();i++)
i->scaleMarkedCoefficientToOne();
while(!p.isZero())
{
p.mark(termOrder);
/* fprintf(Stderr,"Polynomial:\n");
AsciiPrinter(Stderr).printPolynomial(p);
fprintf(Stderr,"\n");
fprintf(Stderr,"Remainder:\n");
AsciiPrinter(Stderr).printPolynomial(r);
fprintf(Stderr,"\n");
*/
Term initial=p.getMarked();
PolynomialSet::const_iterator i;
PolynomialSet::const_iterator iLift=lLift.begin();
for(i=l.begin();i!=l.end();i++)
{
if(i->getMarked().m.exponent.divides(initial.m.exponent))break;
iLift++;
}
if(i!=l.end())
{
Term s(initial.c,Monomial(p.getRing(),initial.m.exponent-i->getMarked().m.exponent));
p-=((*i)*s);
lift+=(*iLift)*s;
}
else
{
p-=initial;
r+=initial;
}
}
lift.mark(marked);
return lift;
}
bool isIdealContainedInIdeal(PolynomialSet const &generators, PolynomialSet const &groebnerBasis)
{
for(PolynomialSet::const_iterator i=generators.begin();i!=generators.end();i++)
{
// if(!division(*i,groebnerBasis,LexicographicTermOrder()).isZero())return false;
if(!division(*i,groebnerBasis,StandardGradedLexicographicTermOrder()).isZero())return false;
// fprintf(Stderr,".\n");
}
return true;
}
bool areIdealsEqual(PolynomialSet const &groebnerBasis1, PolynomialSet const &groebnerBasis2)
{
return isIdealContainedInIdeal(groebnerBasis1,groebnerBasis2)
&& isIdealContainedInIdeal(groebnerBasis2,groebnerBasis1);
}
|