File: lll.cpp

package info (click to toggle)
gfan 0.3dfsg-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze
  • size: 2,012 kB
  • ctags: 1,935
  • sloc: cpp: 17,728; makefile: 251
file content (138 lines) | stat: -rw-r--r-- 2,610 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include "lll.h"

/*double lensq(vektor_f *a)
{
  vektor_f A1=(*a* *a);
  return A1.sum();
}
*/
int down(double f)
{
  if(f>=0)return int(f);
  return int(f-1);
}

void calcmy(IntegerMatrix const &b, FloatMatrix &my, Vektor<double> &B)
{
  FloatMatrix bs=integerToFloatMatrix(b);

  for(int k=0;k<b.getHeight();k++)
    {
      bs[k]=b[k];
      for(int j=0;j<k;j++)
	{
	  if(B[j]==0)
	    my[k][j]=0;
	  else
	    my[k][j]=dot(Vektor<double>(b[k]),bs[j])/B[j];
	  
	  bs[k]=bs[k]-my[k][j]*bs[j];
	}
      B[k]=dot(bs[k],bs[k]);
    }
}

/*void calclambda(basis_i b, basis_f &lambda)
{
  for(int k=0;k<b.size();k++)
    {
      for(int j=0;j<=k;j++)
	{
	  double u=dot(b[k],b[j]);
			
	  for(int i=0;i<j;i++)
	    {
	      if(i-1==-1)
		{
		  u=lambda[i][i]*u-lambda[k][i]*lambda[j][i];
		}
	      else
		{
		  if(lambda[i-1][i-1]!=0)
		    {
		      u=lambda[i][i]*u-lambda[k][i]*lambda[j][i];
		      u/=lambda[i-1][i-1];
		    }
		}
	    }
	  lambda[k][j]=u;
	}
    }
}*/

IntegerMatrix mlll(IntegerMatrix &b, IntegerMatrix *inverseTransposedM)
{
  int k=1;
  int n=b.getHeight();// number of generators

  FloatMatrix my(n,n);//n*n

  Vektor<double> B(n);
  IntegerMatrix M=IntegerMatrix::identity(n);//n*n;
  IntegerMatrix MInverseTransposed=M;
	
  calcmy(b,my,B);
  while(k<n)
    {
      //size reduction
      for(int l=k-1;l>=0;l--)
	{
	  //	  calclambda(b,lambda);
	  int q=down(my[k][l]+0.5);
	  if(q)
	    {
	      b[k]=b[k]-q*b[l];
	      M[k]=M[k]-q*M[l];
	      MInverseTransposed[l]+=q*MInverseTransposed[k];
	      calcmy(b,my,B);
	    }
	}
      //      calcmy(b,my,B);
      //      calclambda(b,lambda);
      //test Lovasz' condition
      if(B[k]<(0.75-my[k][k-1]*my[k][k-1])*B[k-1])
	{
	  Vektor<double> temp=b[k];b[k]=b[k-1];b[k-1]=temp;
	  Vektor<double> temp1=M[k];M[k]=M[k-1];M[k-1]=temp1;
	  temp1=MInverseTransposed[k];MInverseTransposed[k]=MInverseTransposed[k-1];MInverseTransposed[k-1]=temp1;
      calcmy(b,my,B);
	  k--;
	  if(k<1)k=1;
	}
      else k++;
    }

  if(inverseTransposedM)*inverseTransposedM=MInverseTransposed;
  return M;
}


/*int rank(basis_i B)
{
  int n=B.size();
  basis_i M=mlll(B);
  int kerdim=0;
  while((kerdim<B.size())&&(B[kerdim].iszero()))kerdim++;

  return n-kerdim;
}
*/


IntegerMatrix latticeKernelOfTransposed(IntegerMatrix const &B)
{
  IntegerMatrix B2=B;
  IntegerMatrix M=mlll(B2);
  int kerdim=0;
  while((kerdim<B.getHeight())&&(B2[kerdim].isZero()))
    kerdim++;

  IntegerMatrix ret(kerdim,B.getHeight());

  for(int i=0;i<kerdim;i++)
    ret[i]=M[i];

  // add asserts to check that lll reduction works correctly

  return ret;
}