File: reversesearch.cpp

package info (click to toggle)
gfan 0.3dfsg-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze
  • size: 2,012 kB
  • ctags: 1,935
  • sloc: cpp: 17,728; makefile: 251
file content (187 lines) | stat: -rw-r--r-- 4,686 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "reversesearch.h"

#include "buchberger.h"
#include "wallideal.h"
#include "printer.h"
#include "lp.h"
#include "log.h"

bool ReverseSearch::computeSearchEdge(PolynomialSet &groebnerBasis, IntegerVector *edge)
{
  //  fprintf(Stderr,"Computing search edge..");

  IntegerVectorList normals=wallInequalities(groebnerBasis);
  normals.sort(LexicographicTermOrder());// Is this needed to make the interior point computation deterministic?

  //  fprintf(Stderr,"\nBasis with no interior point:\n");
  //  AsciiPrinter(Stderr).printPolynomialSet(groebnerBasis);

  if(normals.empty())
    {
      log3 fprintf(Stderr,"WARNING: reversesearch.cpp - No normals\n");
    }

  IntegerVectorList::const_iterator r=shootRay(normals);

  //  fprintf(Stderr,"..done\n");

  if(r!=normals.end())
    {
      *edge=*r;
      return true;
    }
  return false;

  /*  
  IntegerVectorList normals=wallNormals(groebnerBasis);
  normals.sort(LexicographicTermOrder());

  for(IntegerVectorList::const_iterator i=normals.begin();i!=normals.end();i++)
    if(termOrder(*i,*i-*i))
      if(isFacet(normals,i))
	if(wallContainsPositiveVector(*i))
	  {
            *edge=*i;
            return true;
          }
  return false;
  */
}

/*void ReverseSearch::setProgressPrinting(bool p)
{
  progressPrinting=p;
}
*/
static int depth;

//int ReverseSearch::treeSize(const PolynomialSet &groebnerBasis)
int ReverseSearch::treeSize(PolynomialSet &groebnerBasis)
{
  PolynomialRing theRing=groebnerBasis.getRing();
  depth++;
  //  if(progressPrinting)
  {
    static int n;
    n++;
    if(!(n%10))
      log2 fprintf(Stderr,"%i %i\n",n,depth);
  }

  int s=1;
  if(!targetBasis(groebnerBasis)){broken=true;return s;}

  IntegerVectorList flipable;

  //  fprintf(Stderr,"Number of flipable facets:%i\n",flipable.size());
  if(1)
    {
      //      fprintf(Stderr,"isKnownToBeHomogeneous:%i\n",isKnownToBeHomogeneous);
      //  fprintf(Stderr,"Start finding flipable\n");
 
     flipable=wallFlipableNormals(groebnerBasis,isKnownToBeHomogeneous);
     //  fprintf(Stderr,"done\n");
    }
  else
    {
      // For non-homogeneous ideals the following test does not work since it also findes facets that do not intersect the positive orthant.
      assert(isKnownToBeHomogeneous);

      //Taken from Breadth-first search. Apparently this is faster..
      IntegerVectorList normals=algebraicTest(wallInequalities(groebnerBasis),groebnerBasis);
      //      fprintf(Stderr,"Number of inequalities:%i\n",normals.size());
      
      //      AsciiPrinter(Stderr).printVectorList(normals);
      for(IntegerVectorList::iterator i=normals.begin();i!=normals.end();i++)
	{
	  if(!termOrder(*i,*i-*i))
	    {
	      //	      AsciiPrinter(Stderr).printVector(*i);
	      if(isFacet(normals,i))
		{
		  //		  fprintf(Stderr,"isFACET!n");
		  if(wallContainsPositiveVector(*i))
		    flipable.push_back(*i);
		}
	      else
		{
		  IntegerVectorList::iterator temp=i;
		  temp++;
		  normals.erase(i);
		  temp--;
		  i=temp;
		}
	    }
	}
    }
  //  AsciiPrinter(Stderr).printVectorList(flipable);

  //  fprintf(Stderr,"Number of flipable facets:%i\n",flipable.size());
  for(IntegerVectorList::iterator i=flipable.begin();i!=flipable.end();i++)
    {
      if(!termOrder(*i,*i-*i))
	{
	  PolynomialSet neighbour=flip(groebnerBasis,*i);
	  
	  IntegerVector edge;
	  if(computeSearchEdge(neighbour,&edge))
	    if(dependent(edge,*i))
	      {
		groebnerBasis=PolynomialSet(theRing);//forget current
		s+=treeSize(neighbour);
		groebnerBasis=flip(neighbour,edge);//recall
		
		if(broken)return s;
	      }
	}
    }


  depth--;
  return s;
}


PolynomialSet ReverseSearch::findRoot(PolynomialSet groebnerBasis)
{
  log2 fprintf(Stderr,"Computing root\n");
  log2 buchberger(&groebnerBasis,termOrder);

  IntegerVector edge;
  while(computeSearchEdge(groebnerBasis,&edge))
    {
      log2 AsciiPrinter(Stderr).printVector(edge);
      groebnerBasis=flip(groebnerBasis,edge);
    }

  log2 fprintf(Stderr,"Done computing root\n");
  return groebnerBasis;
}


ReverseSearch::ReverseSearch(const TermOrder &termOrder_):
  numberOfVertices(0),
  numberOfEdges(0),
  termOrder(termOrder_),
							 isKnownToBeHomogeneous(false)//,
  //  progressPrinting(false)
{
}


void ReverseSearch::enumerate(const PolynomialSet &groebnerBasis)
{
  broken=false;

  PolynomialSet root=findRoot(groebnerBasis);

  if(!isKnownToBeHomogeneous)isKnownToBeHomogeneous=isIdealHomogeneous(root);

  //  fprintf(Stderr,"HOMOGENEOUS:%i\n",isKnownToBeHomogeneous);

  targetBeginEnumeration(groebnerBasis);
  numberOfVertices=treeSize(root);
  targetEndEnumeration();

  //  fprintf(Stderr,"numberOfVertices:%i\n",numberOfVertices);
}