File: wallideal.cpp

package info (click to toggle)
gfan 0.3dfsg-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze
  • size: 2,012 kB
  • ctags: 1,935
  • sloc: cpp: 17,728; makefile: 251
file content (540 lines) | stat: -rw-r--r-- 15,663 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#include "wallideal.h"

#include "division.h"
#include "buchberger.h"
#include "timer.h"
#include "printer.h"
#include "lp.h"
#include "polyhedralcone.h"
#include "log.h"

#include <set>

static Timer flipTimer("Flip",10);
static Timer flipTimer1("Flip1",10);
static Timer flipTimer2("Flip2",10);
static Timer flipTimer3("Flip3",10);
static Timer flipTimer4("Flip4",10);
static Timer flipTimer5("Flip5",10);
static Timer coneTimer("fajskfda",10);

Polynomial wallPolynomial(Polynomial const &p, IntegerVector const &wallNormal)
{
  Polynomial r(p.getRing());
  IntegerVector markedExponent=p.getMarked().m.exponent;

  for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
    {
      IntegerVector dif=markedExponent-i->first.exponent;
      if(dependent(dif,wallNormal))
        r+=Polynomial(Term(i->second,i->first));
    }

  r.mark(Monomial(r.getRing(),markedExponent));

  return r;
}

static Polynomial wallPolynomial(Polynomial const &p, IntegerVectorList const &wallEqualities)
{
  Polynomial r(p.getRing());
  IntegerVector markedExponent=p.getMarked().m.exponent;

  for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
    {
      IntegerVector dif=markedExponent-i->first.exponent;
      bool dep=false;
      for(IntegerVectorList::const_iterator j=wallEqualities.begin();j!=wallEqualities.end();j++)
	{
	  if(dependent(dif,*j))
	    {
	      dep=true;
	      break;
	    }
	}

      if(dep || dif.isZero())
	r+=Polynomial(Term(i->second,i->first));
    }

  r.mark(Monomial(p.getRing(),markedExponent));

  return r;
}

PolynomialSet wallIdeal(PolynomialSet const &groebnerBasis, IntegerVector const &wallNormal)
{
  PolynomialRing theRing=groebnerBasis.getRing();
  PolynomialSet r(theRing);

  for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
    {
      r.push_back(wallPolynomial(*i,wallNormal));
    }
  return r;
}

PolynomialSet lowerDimensionalWallIdeal(PolynomialSet const &groebnerBasis, IntegerVectorList const &wallEqualities)
{
  PolynomialRing theRing=groebnerBasis.getRing();
  PolynomialSet r(theRing);

  for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
    {
      r.push_back(wallPolynomial(*i,wallEqualities));
    }
  return r;
}

IntegerVectorList wallRemoveScaledInequalities(IntegerVectorList const &l)
{
  IntegerVectorList ret;

  for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
    {
      bool found=false;
      
      assert(!i->isZero());

      for(IntegerVectorList::const_iterator k=ret.begin();k!=ret.end();k++)
	if(dependent(*i,*k)&&dotLong(*i,*k)>0)found=true;
      
      if(!found)ret.push_back(*i);
    }
  return ret;
}


IntegerVectorList algebraicTest(IntegerVectorList const &l, PolynomialSet const &groebnerBasis) // TO DO: FIGURE OUT IF THIS TEST WORKS IN THE NON-HOMOGENEOUS CASE
{
  PolynomialRing theRing=groebnerBasis.getRing();
  LexicographicTermOrder T;
  PolynomialSet LT(theRing);
  
  for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
    {
      LT.push_back(Polynomial(i->getMarked()));
    }
  

  //fprintf(Stderr,"In Size:%i\n",l.size());
  IntegerVectorList ret;
  for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
    {
      bool accept=true;
      PolynomialSet g2=wallIdeal(groebnerBasis,*i);
      for(PolynomialSet::const_iterator j=g2.begin();j!=g2.end() && accept;j++)
	for(PolynomialSet::const_iterator k=j;k!=g2.end();k++)
	  {
	    //	    fprintf(Stderr,"test\n");
	    if((!j->isMonomial()) || (!k->isMonomial()))
	    if(!relativelyPrime(j->getMarked().m.exponent,k->getMarked().m.exponent))
	      {
		Polynomial s=sPolynomial(*j, *k);
		if(!s.isZero())
		  {
		    bool witness=true;
		    for(TermMap::const_iterator i=s.terms.begin();i!=s.terms.end();i++)
		      {
			bool inideal=false;
			for(PolynomialSet::const_iterator j=LT.begin();j!=LT.end();j++)
			  if(j->getMarked().m.exponent.divides(i->first.exponent))
			    {
			      inideal=true;
			      break;
			    }
			if(inideal)
			  {
			    witness=false;
			    break;
			  }
		      }
		    if(witness)
		      {
			accept=false;
			break;
		      }

/*
		    s.mark(T); // with respect to some termorder
		    s.scaleMarkedCoefficientToOne();

		    if(1)
		      {
			Polynomial t=division(s,LT,T);
			if((t-s).isZero())
			  {
			    accept=false;
			    break;
			  }
		      }
		    	    else
		      {
			s=division(s,g2,T);
			if(!s.isZero())
			  {
			    accept=false;
			    break;
			  }
			  }*/
		  }
	      }
	    
	  }
      if(accept)ret.push_back(*i);
    }
  //  fprintf(Stderr,"Out Size:%i\n",ret.size());
  return ret;
}


IntegerVectorList wallInequalities(PolynomialSet const &groebnerBasis)
{
  IntegerVectorList ret;

  for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
    {
      IntegerVector markedExponent=i->getMarked().m.exponent;

      for(TermMap::const_iterator j=i->terms.begin();j!=i->terms.end();j++)
        {
          IntegerVector dif=markedExponent-j->first.exponent;

          if(!dif.isZero())
            {
	      /* bool found=false; //These four lines are now done in wallRemoveScaledInequalities()

              for(IntegerVectorList::const_iterator k=ret.begin();k!=ret.end();k++)
                if(dependent(dif,*k))found=true;
             
              if(!found)
	      */
	      ret.push_back(dif);
            }
        }
    }

  if(ret.empty())
    {
      log3 fprintf(Stderr,"WARNING: wallideal.cpp - No defining equalities of the Groebner cone! Is your ideal equal to the ring?\n");
    }

  return wallRemoveScaledInequalities(ret);
  //  return algebraicTest(wallRemoveScaledInequalities(ret),groebnerBasis);
}


PolynomialSet flip(PolynomialSet const &groebnerBasis, IntegerVector const &wallNormal)
{
  PolynomialRing theRing=groebnerBasis.getRing();
  //  fprintf(Stderr,"ENTERING flip\n");
  //  fprintf(Stderr,"flip - start\n");
  //  AsciiPrinter(Stderr).printPolynomialSet(groebnerBasis);
  //  AsciiPrinter(Stderr).printVector(wallNormal);

  TimerScope ts(&flipTimer);
  //Subroutine 3.7 in [Sturmfels]

  // Step 1
  //  fprintf(Stderr,"flip - step1\n");  
  flipTimer1.on();
  PolynomialSet wall=wallIdeal(groebnerBasis,wallNormal);
  wall.markAndScale(WeightTermOrder(wallNormal));// This marking will be used later on when we lift
  //  fprintf(Stderr,"Changed order:\n");
  // AsciiPrinter(Stderr).printPolynomialSet(wall);
  flipTimer1.off();
  
  // Step 2
  //  fprintf(Stderr,"flip - step2\n"); 
  // AsciiPrinter(Stderr).printPolynomialSet(wall);
  flipTimer2.on();
  PolynomialSet oldWall=wall;
  WeightTermOrder flipOrder(-wallNormal);
  buchberger(&wall,flipOrder);
  flipTimer2.off();

  // Step 3
  //  fprintf(Stderr,"flip - step3\n");  
  flipTimer3.on();
  PolynomialSet newBasis(theRing);
  flipTimer3.off();

  // Step 4 Lift
  //  fprintf(Stderr,"flip - lifting\n");
  //  fprintf(Stderr,"flip - step4\n");  

  {
    // liftBasis() could be used for this!!!!

    TimerScope ts(&flipTimer4);
    for(PolynomialSet::const_iterator j=wall.begin();j!=wall.end();j++)
      {
	newBasis.push_back(divisionLift(*j, oldWall, groebnerBasis, LexicographicTermOrder()));
	/*{
	    // The following should also work:
	    Polynomial q=*j-division(*j,groebnerBasis,LexicographicTermOrder());
	    assert(!q.isZero());
	    
	    newBasis.push_back(q);
	    }*/
      }
  }
  
  // Step 5 Autoreduce
  //  fprintf(Stderr,"flip - autoreduce\n");
  //  AsciiPrinter(Stderr).printPolynomialSet(wall);
  //  AsciiPrinter(Stderr).printPolynomialSet(newBasis);
  //  fprintf(Stderr,"flip - step5\n");  
  {
    TimerScope ts(&flipTimer5);
    PolynomialSet::const_iterator k=wall.begin();
    for(PolynomialSet::iterator j=newBasis.begin();j!=newBasis.end();j++)
      {
	j->mark(k->getMarked().m);
	k++;
      }
    
    //  fprintf(Stderr,"Marked order:\n");
    //  AsciiPrinter(Stderr).printPolynomialSet(wall);
    //  AsciiPrinter(Stderr).printPolynomialSet(newBasis);
    //  fprintf(Stderr,"Not reduced lifted basis:\n");
    //  AsciiPrinter(Stderr).printPolynomialSet(newBasis);

    static int t;
    t++;
    t&=0;
    if(t==0)
      {
	// fprintf(Stderr,"autoreducing ..");
	autoReduce(&newBasis,LexicographicTermOrder());
	// fprintf(Stderr,".. done\n");
      }
    
    //autoReduce(&newBasis,StandardGradedLexicographicTermOrder());
  }
  
  //  fprintf(Stderr,"flip - done\n");
  //  fprintf(Stderr,"LEAVING flip\n");

  //fprintf(Stderr,"%i",newBasis.size());

  return newBasis;
}


bool wallContainsPositiveVector(IntegerVector const &wallNormal)
{
  //This is not right I think
  int n=wallNormal.size();
  for(int i=0;i<n;i++)if(wallNormal[i]<0)return true;

  return false;
}

void wallAddCoordinateWalls(IntegerVectorList &normals)
{
  assert(!normals.empty());
  int n=normals.begin()->size();
  for(int i=0;i<n;i++)normals.push_back(IntegerVector::standardVector(n,i));
}


bool isIdealHomogeneous(PolynomialSet const &groebnerBasis)
{
  int n=groebnerBasis.numberOfVariablesInRing();
  IntegerVectorList a;
  PolyhedralCone p=intersection(PolyhedralCone(a,wallInequalities(groebnerBasis),n),PolyhedralCone::positiveOrthant(n));
  
  return p.containsPositiveVector();
}


/* This routine is a preprocessing step for redudancy removal.
   The routine normalizes the list of vectors in gcd sense.
   It removes duplicates.
   It removes direction that are sums of other directions.
   The input must satisfy:
     Input must be pointed, meaning that there must exist a codimension one subspace with all the input vectors strictly on one side.
     It particular, there is no zero-vector in the list (It would be easy to change the routine to handle this case)
   These requirements guarantee that *i and *j are not removed in the line with the comment.
 */
IntegerVectorList normalizedWithSumsAndDuplicatesRemoved(IntegerVectorList const &a)
{
  IntegerVectorList ret;
  set<IntegerVector> b;

  for(IntegerVectorList::const_iterator i=a.begin();i!=a.end();i++)
    {
      assert(!(i->isZero()));
      b.insert(normalized(*i));
    }

  for(set<IntegerVector>::const_iterator i=b.begin();i!=b.end();i++)
    for(set<IntegerVector>::const_iterator j=i;j!=b.end();j++)
	if(i!=j)b.erase(normalized(*i+*j));//this can never remove *i or *j

  for(set<IntegerVector>::const_iterator i=b.begin();i!=b.end();i++)
    ret.push_back(*i);

  return ret;
}

IntegerVectorList wallFlipableNormals(PolynomialSet const &groebnerBasis, bool isKnownToBeHomogeneous)
{
  // New optimised version using PolyhedralCone
  int n=groebnerBasis.numberOfVariablesInRing();
  IntegerVectorList a;
  //AsciiPrinter(Stderr).printVectorList(wallInequalities(groebnerBasis));
  //PolyhedralCone p=intersection(PolyhedralCone(wallInequalities(groebnerBasis),a),PolyhedralCone::positiveOrthant(n));

  IntegerVectorList normals=algebraicTest(wallInequalities(groebnerBasis),groebnerBasis);
    coneTimer.on();
    //    PolyhedralCone p=PolyhedralCone(wallInequalities(groebnerBasis),a);

    /*    AsciiPrinter(Stderr).printVectorList(normals);
    AsciiPrinter(Stderr).printInteger(normals.size());
    */
    normals=normalizedWithSumsAndDuplicatesRemoved(normals);

    //    AsciiPrinter(Stderr).printVectorList(normals);
    //   AsciiPrinter(Stderr).printInteger(normals.size());
    
    PolyhedralCone p=PolyhedralCone(normals,a,n);
    //  fprintf(Stderr,"Finding facets\n");
    p.findFacets();
    //  fprintf(Stderr,"Done Finding facets\n");
    coneTimer.off();

  IntegerVectorList ilist=p.getHalfSpaces();
  IntegerVectorList ret;
  for(IntegerVectorList::iterator i=ilist.begin();i!=ilist.end();i++)
    {
      bool facetOK=true;
      if(!isKnownToBeHomogeneous)
	{
	  *i=-1 * (*i);
	  PolyhedralCone temp=intersection(PolyhedralCone(ilist,a),PolyhedralCone::positiveOrthant(n));
	  facetOK=(temp.dimension()==n);
	  *i=-1 * (*i);
	}

      if(facetOK)
	ret.push_back(*i);
    }

  // New version using PolyhedralCone
  /*  int n=groebnerBasis.numberOfVariablesInRing();
  IntegerVectorList a;
  //  AsciiPrinter(Stderr).printVectorList(wallInequalities(groebnerBasis));
  PolyhedralCone p=intersection(PolyhedralCone(wallInequalities(groebnerBasis),a),PolyhedralCone::positiveOrthant(n));
  //  PolyhedralCone p=PolyhedralCone(wallInequalities(groebnerBasis),a);
  p.findFacets();
  IntegerVectorList ilist=p.getHalfSpaces();
  IntegerVectorList ret;
  for(IntegerVectorList::const_iterator i=ilist.begin();i!=ilist.end();i++)
    if(wallContainsPositiveVector(*i))ret.push_back(*i);
  */

  /* Old code not using PolyhedralCone
  IntegerVectorList ilist=wallInequalities(groebnerBasis);
  wallAddCoordinateWalls(ilist);
  IntegerVectorList ret;
  for(IntegerVectorList::const_iterator i=ilist.begin();i!=ilist.end();i++)
    if(isFacet(ilist,i)&&wallContainsPositiveVector(*i))
      ret.push_back(*i);
  */
  return ret;
}


Polynomial flipMinkowski(Polynomial p, IntegerVector const &wallNormal)
{
  IntegerVector best=p.getMarked().m.exponent;

  for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
    {
      IntegerVector e=i->first.exponent;
      IntegerVector diff=e-best;
      if(dependent(diff,wallNormal)&&dot(diff,wallNormal)<0)best=e;
    }
  p.mark(Monomial(p.getRing(),best));

  return p;
}


PolynomialSet flipMinkowski(PolynomialSet const &groebnerBasis, IntegerVector const &wallNormal)
{
  PolynomialSet r(groebnerBasis.getRing());

  for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
    r.push_back(flipMinkowski(*i,wallNormal));

  return r;
}


PolyhedralCone homogeneitySpace(PolynomialSet const &reducedGroebnerBasis)
{
  IntegerVectorList l=wallInequalities(reducedGroebnerBasis);
  IntegerVectorList a;
  PolyhedralCone c(a,l,reducedGroebnerBasis.getRing().getNumberOfVariables());
  c.canonicalize();
  return c;
}

PolyhedralCone groebnerCone(PolynomialSet const &reducedGroebnerBasis, bool useAlgebraicTest)
{
  int n=reducedGroebnerBasis.getRing().getNumberOfVariables();
  IntegerVectorList l=wallInequalities(reducedGroebnerBasis);
  if(useAlgebraicTest)l=algebraicTest(l,reducedGroebnerBasis);
  l=normalizedWithSumsAndDuplicatesRemoved(l);
  IntegerVectorList a;
  PolyhedralCone c(l,a,n);
  c.canonicalize();
  return c;
}

int dimensionOfHomogeneitySpace(PolynomialSet const &reducedGroebnerBasis)
{
  return homogeneitySpace(reducedGroebnerBasis).dimension();
}


PolynomialSet liftBasis(PolynomialSet const &toBeLifted, PolynomialSet const &originalBasisForFullIdeal)
{
  PolynomialRing theRing=toBeLifted.getRing();
  assert(toBeLifted.isValid());
  assert(originalBasisForFullIdeal.isValid());

  PolynomialSet newBasis(theRing);

  //  fprintf(Stderr,"LIFTING:");
  //  AsciiPrinter(Stderr).printPolynomialSet(toBeLifted);

  for(PolynomialSet::const_iterator j=toBeLifted.begin();j!=toBeLifted.end();j++)
    {
      assert(!j->isZero());
      //AsciiPrinter(Stderr).printVector(j->getMarked().m.exponent);
  
      Polynomial q=*j-division(*j,originalBasisForFullIdeal,LexicographicTermOrder());
      assert(!q.isZero());
      q.mark(j->getMarked().m);      	    
      newBasis.push_back(q);
    }
  autoReduce(&newBasis,LexicographicTermOrder());
  //  fprintf(Stderr,"TO:");
  //  AsciiPrinter(Stderr).printPolynomialSet(newBasis);

  return newBasis;
}


bool isMarkingConsistent(PolynomialSet const &g)
{
  IntegerVectorList empty;
  PolyhedralCone c(wallInequalities(g),empty,g.getRing().getNumberOfVariables());
  c=intersection(c,PolyhedralCone::positiveOrthant(c.ambientDimension()));
  log1 AsciiPrinter(Stderr).printPolyhedralCone(c);
  return c.dimension()==c.ambientDimension();
}