1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
#include "parser.h"
#include "printer.h"
#include "polynomial.h"
#include "division.h"
#include "buchberger.h"
#include "wallideal.h"
#include "lp.h"
#include "reversesearch.h"
#include "termorder.h"
#include "ep_standard.h"
#include "ep_xfig.h"
#include "gfanapplication.h"
#include "renderer.h"
class RenderStaircaseApplication : public GFanApplication
{
SimpleOption optionListOfPolynomialSets;
IntegerOption optionMaxEntry;
IntegerOption optionWidth;
public:
const char *helpText()
{
return "This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.\n";
}
RenderStaircaseApplication():
optionListOfPolynomialSets("-m","Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.\n"),
optionMaxEntry("-d","Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.\n",8),
optionWidth("-w","Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.\n",5)
{
registerOptions();
}
const char *name()
{
return "_renderstaircase";
}
int main()
{
FileParser P(Stdin);
StandardMonomialRenderer r(Stdout);
r.setMaxEntry(optionMaxEntry.getValue());
r.setNumberOfDrawingsPerLine(optionWidth.getValue());
if(optionListOfPolynomialSets.getValue())
{
PolynomialSetList l=P.parsePolynomialSetListWithRing();
for(PolynomialSetList::const_iterator i=l.begin();i!=l.end();i++)
r.render(*i);
}
else
{
PolynomialSet p=P.parsePolynomialSetWithRing();
r.render(p);
}
return 0;
}
};
static RenderStaircaseApplication theApplication;
|